• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Multivariable Prediction Model for Futile Recanalization Therapies in Patients With Acute Ischemic Stroke.
 

Multivariable Prediction Model for Futile Recanalization Therapies in Patients With Acute Ischemic Stroke.

Options
  • Details
BORIS DOI
10.48350/171220
Date of Publication
September 5, 2022
Publication Type
Article
Division/Institute

Universitätsinstitut ...

Universitätsklinik fü...

Contributor
Meinel, Thomas Raphaelorcid-logo
Universitätsklinik für Neurologie
Lerch, Christine
Fischer, Urs
Beyeler, Morin
Universitätsklinik für Neurologie
Mujanovic, Adnan
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Kurmann, Christoph Carmelino
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Siepen, Bernhard Matthias
Universitätsklinik für Neurologie
Scutelnic, Adrian
Universitätsklinik für Neurologie
Müller, Madlaine
Universitätsklinik für Neurologie
Göldlin, Martina Béatriceorcid-logo
Universitätsklinik für Neurologie
Belachew, Nebiyat Filate
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Dobrocky, Tomas
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Gralla, Jan
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Seiffge, David Julian
Universitätsklinik für Neurologie
Jung, Simon
Universitätsklinik für Neurologie
Arnold, Marcel
Universitätsklinik für Neurologie
Wiest, Roland Gerhard Rudi
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Meier, Raphael
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Kaesmacher, Johannes
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
Subject(s)

600 - Technology::610...

Series
Neurology
ISSN or ISBN (if monograph)
1526-632X
Publisher
American Academy of Neurology
Language
English
Publisher DOI
10.1212/WNL.0000000000200815
PubMed ID
35803722
Description
BACKGROUND AND OBJECTIVES

Very poor outcome despite intravenous thrombolysis (IVT) and mechanical thrombectomy (MT) occurs in about 1 of 4 patients with ischemic stroke and is associated with a high logistic and economic burden. We aimed to develop and validate a multivariable prognostic model to identify futile recanalization therapies (FRT) in patients undergoing those therapies.

MATERIALS AND METHODS

Patients from a prospectively collected observational registry of a single academic stroke center treated with MT and/or IVT were included. The dataset was split into a training (N=1808, 80%) and internal validation (N=453, 20%) cohort. We used gradient boosted decision tree machine-learning models after k-NN imputation of 32 variables available at admission to predict FRT defined as modified Rankin-Scale (mRS) 5-6 at 3 months. We report feature importance, ability for discrimination, calibration and decision curve analysis.

RESULTS

2261 patients with a median (IQR) age 75 years (64-83), 46% female, median NIHSS 9 (4-17), 34% IVT alone, 41% MT alone, 25% bridging were included. Overall 539 (24%) had FRT, more often in MT alone (34%) as compared to IVT alone (11%). Feature importance identified clinical variables (stroke severity, age, active cancer, prestroke disability), laboratory values (glucose, CRP, creatinine), imaging biomarkers (white matter hyperintensities) and onset-to-admission time as the most important predictors. The final model was discriminatory for predicting 3-month FRT (AUC 0.87, 95% CI 0.87-0.88) and had good calibration (Brier 0.12, 0.11-0.12). Overall performance was moderate (F1-score 0.63 ± 0.004) and decision curve analyses suggested higher mean net benefit at lower thresholds of treatment (up to 0.8).

CONCLUSIONS

This FRT prediction model can help inform shared decision making and identify the most relevant features in the emergency setting. While it might be particularly useful in low resource healthcare settings, incorporation of further multifaceted variables is necessary to further increase the predictive performance.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/86088
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
WNL.0000000000200815.full.pdftextAdobe PDF728.82 KBacceptedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo