Publication:
Multivariable Prediction Model for Futile Recanalization Therapies in Patients With Acute Ischemic Stroke.

cris.virtual.author-orcid0000-0002-0647-9273
cris.virtual.author-orcid0000-0001-5800-116X
cris.virtualsource.author-orcid1869f7cd-3a15-4af1-bbf9-2b73c71e0e64
cris.virtualsource.author-orcidf18dc63b-7d2f-4fb5-ba59-3e6accfb3a67
cris.virtualsource.author-orcid54c161a2-b114-4495-97af-31a5e3ba4e97
cris.virtualsource.author-orcid45388eed-a8d0-4c96-bc6a-a63a02829a04
cris.virtualsource.author-orcid60fdb032-21f4-44f7-83b8-feeab81e8161
cris.virtualsource.author-orcidd2cb6bc4-2d9e-445b-a256-f228bec5d2c1
cris.virtualsource.author-orcid268c6868-3f45-4f65-b1ab-8eee3e23d854
cris.virtualsource.author-orcid2034cb7d-419d-4bbe-9031-4898a70bd5b6
cris.virtualsource.author-orcid6cad49b2-8963-4468-b104-ea5b331577f8
cris.virtualsource.author-orcid6bca269a-b080-43cf-a340-2559fc2f7595
cris.virtualsource.author-orcida23d3049-bb4e-4895-99fe-55e4de9f41b1
cris.virtualsource.author-orcid1963851a-c2fa-4878-b4e1-48d9aabed5ea
cris.virtualsource.author-orcide67bda97-92ef-4c25-85b8-b2914607e753
cris.virtualsource.author-orcideb27a92a-8008-4040-98fb-44b2ca5f0ced
cris.virtualsource.author-orcide395ad1e-0793-4f3f-9b2b-822910ec313e
cris.virtualsource.author-orcid021e77f8-1626-4e6f-aab0-dbda0a39b241
datacite.rightsopen.access
dc.contributor.authorMeinel, Thomas Raphael
dc.contributor.authorLerch, Christine
dc.contributor.authorFischer, Urs
dc.contributor.authorBeyeler, Morin
dc.contributor.authorMujanovic, Adnan
dc.contributor.authorKurmann, Christoph Carmelino
dc.contributor.authorSiepen, Bernhard Matthias
dc.contributor.authorScutelnic, Adrian
dc.contributor.authorMüller, Madlaine
dc.contributor.authorGöldlin, Martina Béatrice
dc.contributor.authorBelachew, Nebiyat Filate
dc.contributor.authorDobrocky, Tomas
dc.contributor.authorGralla, Jan
dc.contributor.authorSeiffge, David Julian
dc.contributor.authorJung, Simon
dc.contributor.authorArnold, Marcel
dc.contributor.authorWiest, Roland Gerhard Rudi
dc.contributor.authorMeier, Raphael
dc.contributor.authorKaesmacher, Johannes
dc.date.accessioned2024-10-11T16:48:50Z
dc.date.available2024-10-11T16:48:50Z
dc.date.issued2022-09-05
dc.description.abstractBACKGROUND AND OBJECTIVES Very poor outcome despite intravenous thrombolysis (IVT) and mechanical thrombectomy (MT) occurs in about 1 of 4 patients with ischemic stroke and is associated with a high logistic and economic burden. We aimed to develop and validate a multivariable prognostic model to identify futile recanalization therapies (FRT) in patients undergoing those therapies. MATERIALS AND METHODS Patients from a prospectively collected observational registry of a single academic stroke center treated with MT and/or IVT were included. The dataset was split into a training (N=1808, 80%) and internal validation (N=453, 20%) cohort. We used gradient boosted decision tree machine-learning models after k-NN imputation of 32 variables available at admission to predict FRT defined as modified Rankin-Scale (mRS) 5-6 at 3 months. We report feature importance, ability for discrimination, calibration and decision curve analysis. RESULTS 2261 patients with a median (IQR) age 75 years (64-83), 46% female, median NIHSS 9 (4-17), 34% IVT alone, 41% MT alone, 25% bridging were included. Overall 539 (24%) had FRT, more often in MT alone (34%) as compared to IVT alone (11%). Feature importance identified clinical variables (stroke severity, age, active cancer, prestroke disability), laboratory values (glucose, CRP, creatinine), imaging biomarkers (white matter hyperintensities) and onset-to-admission time as the most important predictors. The final model was discriminatory for predicting 3-month FRT (AUC 0.87, 95% CI 0.87-0.88) and had good calibration (Brier 0.12, 0.11-0.12). Overall performance was moderate (F1-score 0.63 ± 0.004) and decision curve analyses suggested higher mean net benefit at lower thresholds of treatment (up to 0.8). CONCLUSIONS This FRT prediction model can help inform shared decision making and identify the most relevant features in the emergency setting. While it might be particularly useful in low resource healthcare settings, incorporation of further multifaceted variables is necessary to further increase the predictive performance.
dc.description.sponsorshipUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
dc.description.sponsorshipUniversitätsklinik für Neurologie
dc.identifier.doi10.48350/171220
dc.identifier.pmid35803722
dc.identifier.publisherDOI10.1212/WNL.0000000000200815
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/86088
dc.language.isoen
dc.publisherAmerican Academy of Neurology
dc.relation.ispartofNeurology
dc.relation.issn1526-632X
dc.relation.organizationDCD5A442BB1CE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C011E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BAE0E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleMultivariable Prediction Model for Futile Recanalization Therapies in Patients With Acute Ischemic Stroke.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPagee1018
oaire.citation.issue10
oaire.citation.startPagee1009
oaire.citation.volume99
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsklinik für Neurologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliation2Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-07-11 11:05:12
unibe.description.ispublishedpub
unibe.eprints.legacyId171220
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
WNL.0000000000200815.full.pdf
Size:
728.82 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
accepted

Collections