• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis.
 

Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis.

Options
  • Details
BORIS DOI
10.48350/181733
Date of Publication
August 1, 2023
Publication Type
article
Division/Institute

ARTORG Center for Bio...

Universitätsinstitut ...

ARTORG Center for Bio...

Contributor
Dack, Ethan Lowell Thorpe
ARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
ARTORG Center for Biomedical Engineering Research
Christe, Andreas
Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
Fontanellaz, Matthias Andreas
ARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
Brigato, Lorenzo
ARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
ARTORG Center for Biomedical Engineering Research
Heverhagen, Johannesorcid-logo
Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
Peters, Alan Arthur
Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
Huber, Adrian Thomas
Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
Hoppe, Hanno
Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
Mougiakakou, Stavroula
ARTORG Center for Biomedical Engineering Research
ARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
Ebner, Lukas
Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
Subject(s)

600 - Technology::610...

500 - Science::570 - ...

Series
Investigative radiology
ISSN or ISBN (if monograph)
1536-0210
Publisher
Wolters Kluwer Health
Language
English
Publisher DOI
10.1097/RLI.0000000000000974
PubMed ID
37058321
Description
Interstitial lung disease (ILD) is now diagnosed by an ILD-board consisting of radiologists, pulmonologists, and pathologists. They discuss the combination of computed tomography (CT) images, pulmonary function tests, demographic information, and histology and then agree on one of the 200 ILD diagnoses. Recent approaches employ computer-aided diagnostic tools to improve detection of disease, monitoring, and accurate prognostication. Methods based on artificial intelligence (AI) may be used in computational medicine, especially in image-based specialties such as radiology. This review summarises and highlights the strengths and weaknesses of the latest and most significant published methods that could lead to a holistic system for ILD diagnosis. We explore current AI methods and the data use to predict the prognosis and progression of ILDs. It is then essential to highlight the data that holds the most information related to risk factors for progression, e.g., CT scans and pulmonary function tests. This review aims to identify potential gaps, highlight areas that require further research, and identify the methods that could be combined to yield more promising results in future studies.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/166469
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
Artificial_Intelligence_and_Interstitial_Lung.105.pdftextAdobe PDF5.68 MBpublishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo