Publication:
Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis.

cris.virtual.author-orcid0000-0002-5416-6650
cris.virtualsource.author-orcid16abd4a1-d2d9-4f85-b15c-0661a1e6234f
cris.virtualsource.author-orcidfacaa02b-6315-4e62-9740-da2a15d5c383
cris.virtualsource.author-orcidfc1677dd-0aea-4d03-94c5-f5d758778668
cris.virtualsource.author-orcide890563a-b385-429f-8b1b-8cfe2b02320d
cris.virtualsource.author-orcid036bba9b-5ebe-4168-a978-4a56bde35a9b
cris.virtualsource.author-orciddcb4022a-fe44-4c8e-a684-3ecc03f2e288
cris.virtualsource.author-orcid58ad3624-3226-4d59-8a0b-4544340eb908
cris.virtualsource.author-orcid3bbfb2a9-e0a0-41d6-bf5b-df47b5069dc7
cris.virtualsource.author-orcid52d623bf-286d-4864-84bd-ba0cf35a9187
cris.virtualsource.author-orcid7e3bdb13-391d-4d51-bb7e-c00c0a249904
datacite.rightsopen.access
dc.contributor.authorDack, Ethan Lowell Thorpe
dc.contributor.authorChriste, Andreas
dc.contributor.authorFontanellaz, Matthias Andreas
dc.contributor.authorBrigato, Lorenzo
dc.contributor.authorHeverhagen, Johannes
dc.contributor.authorPeters, Alan Arthur
dc.contributor.authorHuber, Adrian Thomas
dc.contributor.authorHoppe, Hanno
dc.contributor.authorMougiakakou, Stavroula
dc.contributor.authorEbner, Lukas
dc.date.accessioned2024-10-25T16:17:36Z
dc.date.available2024-10-25T16:17:36Z
dc.date.issued2023-08-01
dc.description.abstractInterstitial lung disease (ILD) is now diagnosed by an ILD-board consisting of radiologists, pulmonologists, and pathologists. They discuss the combination of computed tomography (CT) images, pulmonary function tests, demographic information, and histology and then agree on one of the 200 ILD diagnoses. Recent approaches employ computer-aided diagnostic tools to improve detection of disease, monitoring, and accurate prognostication. Methods based on artificial intelligence (AI) may be used in computational medicine, especially in image-based specialties such as radiology. This review summarises and highlights the strengths and weaknesses of the latest and most significant published methods that could lead to a holistic system for ILD diagnosis. We explore current AI methods and the data use to predict the prognosis and progression of ILDs. It is then essential to highlight the data that holds the most information related to risk factors for progression, e.g., CT scans and pulmonary function tests. This review aims to identify potential gaps, highlight areas that require further research, and identify the methods that could be combined to yield more promising results in future studies.
dc.description.noteEthan Dack, Andreas Christe, Stavroula Mougiakakou, and Lucas Ebner contributed equally to this study (shared first and shared last authorship).
dc.description.numberOfPages8
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
dc.description.sponsorshipUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research
dc.identifier.doi10.48350/181733
dc.identifier.pmid37058321
dc.identifier.publisherDOI10.1097/RLI.0000000000000974
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/166469
dc.language.isoen
dc.publisherWolters Kluwer Health
dc.relation.ispartofInvestigative radiology
dc.relation.issn1536-0210
dc.relation.organizationInstitute of Diagnostic, Interventional and Paediatric Radiology
dc.relation.organizationARTORG Center for Biomedical Engineering Research
dc.relation.organizationARTORG Center - Artificial Intelligence in Health and Nutrition
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.titleArtificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage609
oaire.citation.issue8
oaire.citation.startPage602
oaire.citation.volume58
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR)
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research - AI in Health and Nutrition
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-04-17 10:57:06
unibe.description.ispublishedpub
unibe.eprints.legacyId181733
unibe.refereedtrue
unibe.subtype.articlereview

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Artificial_Intelligence_and_Interstitial_Lung.105.pdf
Size:
5.68 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
published

Collections