• LOGIN
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publication
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study.
 

A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study.

Options
  • Details
BORIS DOI
10.48350/150027
Date of Publication
November 2020
Publication Type
Article
Division/Institute

Universitätsklinik fü...

Institut für Patholog...

Author
Lu, Cheng
Bera, Kaustav
Wang, Xiangxue
Prasanna, Prateek
Xu, Jun
Janowczyk, Andrew
Beig, Niha
Yang, Michael
Fu, Pingfu
Lewis, James
Choi, Humberto
Schmid, Ralph
Universitätsklinik für Thoraxchirurgie
Berezowska, Sabina Annaorcid-logo
Institut für Pathologie
Schalper, Kurt
Rimm, David
Velcheti, Vamsidhar
Madabhushi, Anant
Subject(s)

600 - Technology::610...

500 - Science::570 - ...

Series
The Lancet. Digital health
ISSN or ISBN (if monograph)
2589-7500
Publisher
Elsevier
Language
English
Publisher DOI
10.1016/s2589-7500(20)30225-9
PubMed ID
33163952
Description
Background

Intratumoural heterogeneity has been previously shown to be related to clonal evolution and genetic instability and associated with tumour progression. Phenotypically, it is reflected in the diversity of appearance and morphology within cell populations. Computer-extracted features relating to tumour cellular diversity on routine tissue images might correlate with outcome. This study investigated the prognostic ability of computer-extracted features of tumour cellular diversity (CellDiv) from haematoxylin and eosin (H&E)-stained histology images of non-small cell lung carcinomas (NSCLCs).

Methods

In this multicentre, retrospective study, we included 1057 patients with early-stage NSCLC with corresponding diagnostic histology slides and overall survival information from four different centres. CellDiv features quantifying local cellular morphological diversity from H&E-stained histology images were extracted from the tumour epithelium region. A Cox proportional hazards model based on CellDiv was used to construct risk scores for lung adenocarcinoma (LUAD; 270 patients) and lung squamous cell carcinoma (LUSC; 216 patients) separately using data from two of the cohorts, and was validated in the two remaining independent cohorts (comprising 236 patients with LUAD and 335 patients with LUSC). We used multivariable Cox regression analysis to examine the predictive ability of CellDiv features for 5-year overall survival, controlling for the effects of clinical and pathological parameters. We did a gene set enrichment and Gene Ontology analysis on 405 patients to identify associations with differentially expressed biological pathways implicated in lung cancer pathogenesis.

Findings

For prognosis of patients with early-stage LUSC, the CellDiv LUSC model included 11 discriminative CellDiv features, whereas for patients with early-stage LUAD, the model included 23 features. In the independent validation cohorts, patients predicted to be at a higher risk by the univariable CellDiv model had significantly worse 5-year overall survival (hazard ratio 1·48 [95% CI 1·06-2·08]; p=0·022 for The Cancer Genome Atlas [TCGA] LUSC group, 2·24 [1·04-4·80]; p=0·039 for the University of Bern LUSC group, and 1·62 [1·15-2·30]; p=0·0058 for the TCGA LUAD group). The identified CellDiv features were also found to be strongly associated with apoptotic signalling and cell differentiation pathways.

Interpretation

CellDiv features were strongly prognostic of 5-year overall survival in patients with early-stage NSCLC and also associated with apoptotic signalling and cell differentiation pathways. The CellDiv-based risk stratification model could potentially help to determine which patients with early-stage NSCLC might receive added benefit from adjuvant therapy.

Funding

National Institue of Health and US Department of Defense.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/38984
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
1-s2.0-S2589750020302259-main.pdfAdobe PDF2.95 MBpublishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: d1c7f7 [27.06. 13:56]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo