• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma
 

Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma

Options
  • Details
Description
Members of Reader Study Consortium:
Antonia Reimer-Taschenbrecker
Antonios G. A. Kolios
BORIS DOI
10.48620/85454
Date of Publication
January 15, 2024
Publication Type
Article
Division/Institute

Clinic of Dermatology...

Contributor
Chanda, Tirtha
Hauser, Katja
Hobelsberger, Sarah
Bucher, Tabea-Clara
Garcia, Carina Nogueira
Wies, Christoph
Kittler, Harald
Tschandl, Philipp
Navarrete-Dechent, Cristian
Podlipnik, Sebastian
Chousakos, Emmanouil
Crnaric, Iva
Majstorovic, Jovana
Alhajwan, Linda
Foreman, Tanya
Peternel, Sandra
Sarap, Sergei
Özdemir, İrem
Barnhill, Raymond L.
Llamas-Velasco, Mar
Poch, Gabriela
Korsing, Sören
Sondermann, Wiebke
Gellrich, Frank Friedrich
Heppt, Markus V.
Erdmann, Michael
Haferkamp, Sebastian
Drexler, Konstantin
Goebeler, Matthias
Schilling, Bastian
Utikal, Jochen S.
Ghoreschi, Kamran
Fröhling, Stefan
Krieghoff-Henning, Eva
Salava, Alexander
Thiem, Alexander
Dimitrios, Alexandris
Ammar, Amr Mohammad
Vučemilović, Ana Sanader
Yoshimura, Andrea Miyuki
Ilieva, Andzelka
Gesierich, Anja
Reimer-Taschenbrecker, Antonia
Clinic of Dermatology
Kolios, Antonios G. A.
Kalva, Arturs
Ferhatosmanoğlu, Arzu
Beyens, Aude
Pföhler, Claudia
Erdil, Dilara Ilhan
Jovanovic, Dobrila
Racz, Emoke
Bechara, Falk G.
Vaccaro, Federico
Dimitriou, Florentia
Rasulova, Gunel
Cenk, Hulya
Yanatma, Irem
Kolm, Isabel
Hoorens, Isabelle
Sheshova, Iskra Petrovska
Jocic, Ivana
Knuever, Jana
Fleißner, Janik
Thamm, Janis Raphael
Dahlberg, Johan
Lluch-Galcerá, Juan José
Figueroa, Juan Sebastián Andreani
Holzgruber, Julia
Welzel, Julia
Damevska, Katerina
Mayer, Kristine Elisabeth
Maul, Lara Valeska
Garzona-Navas, Laura
Bley, Laura Isabell
Schmitt, Laurenz
Reipen, Lena
Shafik, Lidia
Petrovska, Lidija
Golle, Linda
Jopen, Luise
Gogilidze, Magda
Burg, Maria Rosa
Morales-Sánchez, Martha Alejandra
Sławińska, Martyna
Mengoni, Miriam
Dragolov, Miroslav
Iglesias-Pena, Nicolás
Booken, Nina
Enechukwu, Nkechi Anne
Persa, Oana-Diana
Oninla, Olumayowa Abimbola
Theofilogiannakou, Panagiota
Kage, Paula
Neto, Roque Rafael Oliveira
Peralta, Rosario
Afiouni, Rym
Schuh, Sandra
Schnabl-Scheu, Saskia
Vural, Seçil
Hudson, Sharon
Saa, Sonia Rodriguez
Hartmann, Sören
Damevska, Stefana
Finck, Stefanie
Braun, Stephan Alexander
Hartmann, Tim
Welponer, Tobias
Sotirovski, Tomica
Bondare-Ansberga, Vanda
Ahlgrimm-Siess, Verena
Frings, Verena Gerlinde
Simeonovski, Viktor
Zafirovik, Zorica
Maul, Julia-Tatjana
Lehr, Saskia
Wobser, Marion
Debus, Dirk
Riad, Hassan
Pereira, Manuel P.
Lengyel, Zsuzsanna
Balcere, Alise
Tsakiri, Amalia
Braun, Ralph P.
Brinker, Titus J.
Series
Nature Communications
ISSN or ISBN (if monograph)
2041-1723
Publisher
Nature Research
Language
English
Publisher DOI
10.1038/s41467-023-43095-4
PubMed ID
38225244
Description
Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists' decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists' diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists' confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists' willingness to adopt such XAI systems, promoting future use in the clinic.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/203957
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
s41467-023-43095-4.pdftextAdobe PDF3.16 MBAttribution (CC BY 4.0)publishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo