• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Digital haptics improve speed of visual search performance in a dual-task setting.
 

Digital haptics improve speed of visual search performance in a dual-task setting.

Options
  • Details
  • Files
BORIS DOI
10.48350/170779
Publisher DOI
10.1038/s41598-022-13827-5
PubMed ID
35710569
Description
Dashboard-mounted touchscreen tablets are now common in vehicles. Screen/phone use in cars likely shifts drivers' attention away from the road and contributes to risk of accidents. Nevertheless, vision is subject to multisensory influences from other senses. Haptics may help maintain or even increase visual attention to the road, while still allowing for reliable dashboard control. Here, we provide a proof-of-concept for the effectiveness of digital haptic technologies (hereafter digital haptics), which use ultrasonic vibrations on a tablet screen to render haptic perceptions. Healthy human participants (N = 25) completed a divided-attention paradigm. The primary task was a centrally-presented visual conjunction search task, and the secondary task entailed control of laterally-presented sliders on the tablet. Sliders were presented visually, haptically, or visuo-haptically and were vertical, horizontal or circular. We reasoned that the primary task would be performed best when the secondary task was haptic-only. Reaction times (RTs) on the visual search task were fastest when the tablet task was haptic-only. This was not due to a speed-accuracy trade-off; there was no evidence for modulation of VST accuracy according to modality of the tablet task. These results provide the first quantitative support for introducing digital haptics into vehicle and similar contexts.
Date of Publication
2022-06-16
Publication Type
Article
Subject(s)
000 - Computer science, knowledge & systems
500 - Science::510 - Mathematics
Language(s)
en
Contributor(s)
Tivadar, Ruxandra-Iolanda
Institut für Informatik (INF)
Arnold, Rebecca C
Turoman, Nora
Knebel, Jean-François
Murray, Micah M
Additional Credits
Institut für Informatik (INF)
Series
Scientific reports
Publisher
Springer Nature
ISSN
2045-2322
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: ae9592 [15.12. 16:43]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
  • Audiovisual Material
  • Software & other digital items
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo