Malignancy risk stratification for pulmonary nodules: comparing a deep learning approach to multiparametric statistical models in different disease groups.
Options
BORIS DOI
Date of Publication
January 2, 2025
Publication Type
Article
Division/Institute
Contributor
Piskorski, Lars | |
Debic, Manuel | |
von Stackelberg, Oyunbileg | |
Schlamp, Kai | |
Welzel, Linn | |
Weinheimer, Oliver | |
Wielpütz, Mark Oliver | |
Frauenfelder, Thomas | |
Kauczor, Hans-Ulrich | |
Heußel, Claus Peter | |
Kroschke, Jonas |
Subject(s)
Series
European Radiology
ISSN or ISBN (if monograph)
1432-1084
0938-7994
Publisher
Springer
Language
English
Publisher DOI
PubMed ID
39747589
Uncontrolled Keywords
Description
Objectives
Incidentally detected pulmonary nodules present a challenge in clinical routine with demand for reliable support systems for risk classification. We aimed to evaluate the performance of the lung-cancer-prediction-convolutional-neural-network (LCP-CNN), a deep learning-based approach, in comparison to multiparametric statistical methods (Brock model and Lung-RADS®) for risk classification of nodules in cohorts with different risk profiles and underlying pulmonary diseases.
Materials And Methods
Retrospective analysis was conducted on non-contrast and contrast-enhanced CT scans containing pulmonary nodules measuring 5-30 mm. Ground truth was defined by histology or follow-up stability. The final analysis was performed on 297 patients with 422 eligible nodules, of which 105 nodules were malignant. Classification performance of the LCP-CNN, Brock model, and Lung-RADS® was evaluated in terms of diagnostic accuracy measurements including ROC-analysis for different subcohorts (total, screening, emphysema, and interstitial lung disease).
Results
LCP-CNN demonstrated superior performance compared to the Brock model in total and screening cohorts (AUC 0.92 (95% CI: 0.89-0.94) and 0.93 (95% CI: 0.89-0.96)). Superior sensitivity of LCP-CNN was demonstrated compared to the Brock model and Lung-RADS® in total, screening, and emphysema cohorts for a risk threshold of 5%. Superior sensitivity of LCP-CNN was also shown across all disease groups compared to the Brock model at a threshold of 65%, compared to Lung-RADS® sensitivity was better or equal. No significant differences in the performance of LCP-CNN were found between subcohorts.
Conclusion
This study offers further evidence of the potential to integrate deep learning-based decision support systems into pulmonary nodule classification workflows, irrespective of the individual patient risk profile and underlying pulmonary disease.
Key Points
Question Is a deep-learning approach (LCP-CNN) superior to multiparametric models (Brock model, Lung-RADS®) in classifying pulmonary nodule risk across varied patient profiles? Findings LCP-CNN shows superior performance in risk classification of pulmonary nodules compared to multiparametric models with no significant impact on risk profiles and structural pulmonary diseases. Clinical relevance LCP-CNN offers efficiency and accuracy, addressing limitations of traditional models, such as variations in manual measurements or lack of patient data, while producing robust results. Such approaches may therefore impact clinical work by complementing or even replacing current approaches.
Incidentally detected pulmonary nodules present a challenge in clinical routine with demand for reliable support systems for risk classification. We aimed to evaluate the performance of the lung-cancer-prediction-convolutional-neural-network (LCP-CNN), a deep learning-based approach, in comparison to multiparametric statistical methods (Brock model and Lung-RADS®) for risk classification of nodules in cohorts with different risk profiles and underlying pulmonary diseases.
Materials And Methods
Retrospective analysis was conducted on non-contrast and contrast-enhanced CT scans containing pulmonary nodules measuring 5-30 mm. Ground truth was defined by histology or follow-up stability. The final analysis was performed on 297 patients with 422 eligible nodules, of which 105 nodules were malignant. Classification performance of the LCP-CNN, Brock model, and Lung-RADS® was evaluated in terms of diagnostic accuracy measurements including ROC-analysis for different subcohorts (total, screening, emphysema, and interstitial lung disease).
Results
LCP-CNN demonstrated superior performance compared to the Brock model in total and screening cohorts (AUC 0.92 (95% CI: 0.89-0.94) and 0.93 (95% CI: 0.89-0.96)). Superior sensitivity of LCP-CNN was demonstrated compared to the Brock model and Lung-RADS® in total, screening, and emphysema cohorts for a risk threshold of 5%. Superior sensitivity of LCP-CNN was also shown across all disease groups compared to the Brock model at a threshold of 65%, compared to Lung-RADS® sensitivity was better or equal. No significant differences in the performance of LCP-CNN were found between subcohorts.
Conclusion
This study offers further evidence of the potential to integrate deep learning-based decision support systems into pulmonary nodule classification workflows, irrespective of the individual patient risk profile and underlying pulmonary disease.
Key Points
Question Is a deep-learning approach (LCP-CNN) superior to multiparametric models (Brock model, Lung-RADS®) in classifying pulmonary nodule risk across varied patient profiles? Findings LCP-CNN shows superior performance in risk classification of pulmonary nodules compared to multiparametric models with no significant impact on risk profiles and structural pulmonary diseases. Clinical relevance LCP-CNN offers efficiency and accuracy, addressing limitations of traditional models, such as variations in manual measurements or lack of patient data, while producing robust results. Such approaches may therefore impact clinical work by complementing or even replacing current approaches.
File(s)
File | File Type | Format | Size | License | Publisher/Copright statement | Content | |
---|---|---|---|---|---|---|---|
s00330-024-11256-8.pdf | text | Adobe PDF | 910.78 KB | published |