Glacial-interglacial dust and export production records from the Southern Indian Ocean
Options
BORIS DOI
Date of Publication
August 2019
Publication Type
Article
Division/Institute
Author
Moretti, Simone | |
Auderset, Alexandra | |
Lippold, Jörg | |
Crosta, Xavier | |
Mazaud, Alain | |
Michel, Elisabeth | |
Martinez-Garcia, Alfredo |
Subject(s)
Series
Earth and planetary science letters
ISSN or ISBN (if monograph)
0012-821X
Publisher
Elsevier
Language
English
Publisher DOI
Description
We present 230Th-normalized dust and export production fluxes for two contrasted marine sediment cores spanning the Antarctic Polar Front, close to the Kerguelen Plateau in the Southern Indian Ocean, covering the last glacial cycle.
We report glacial lithogenic fluxes comparable to the South Atlantic and higher than in the South Pacific sectors of the Southern Ocean. Structural and temporal discrepancies with dust reconstructions from Antarctic ice cores and the Atlantic and Pacific sectors of the Subantarctic Zone (SAZ) point towards Southern Africa and/or the Kerguelen Plateau as an additional source of lithogenic material to the Southern Indian Ocean during the last ice age.
In the SAZ, export production proxies respond to iron (Fe) fertilization with total organic carbon (TOC) fluxes as high as those previously reported from the Atlantic sector of the Southern Ocean. However, the correlation between export production and dust proxies is weaker than in the other sectors, and shows a muted response of export production during peak glacials. We hypothesize that this muted response may be related to macronutrient (co-)limitation imposed on phytoplankton growth possibly induced by a northward displacement of wind-driven upwelling and/or the polar frontal system during peak glacials. The Antarctic Zone (AZ) record depicts the typical pattern of enhanced export production during interglacials and comparatively low productivity during glacials suggesting a decrease in the supply of macronutrients to the AZ surface during ice ages compared to warm periods, as previously proposed. However, a muted response of opal fluxes during marine isotope stage (MIS) 5e argues for a southward migration of the frontal system during warmer MIS 5e, possibly causing silicic acid (co-)limitation at this site.
We report glacial lithogenic fluxes comparable to the South Atlantic and higher than in the South Pacific sectors of the Southern Ocean. Structural and temporal discrepancies with dust reconstructions from Antarctic ice cores and the Atlantic and Pacific sectors of the Subantarctic Zone (SAZ) point towards Southern Africa and/or the Kerguelen Plateau as an additional source of lithogenic material to the Southern Indian Ocean during the last ice age.
In the SAZ, export production proxies respond to iron (Fe) fertilization with total organic carbon (TOC) fluxes as high as those previously reported from the Atlantic sector of the Southern Ocean. However, the correlation between export production and dust proxies is weaker than in the other sectors, and shows a muted response of export production during peak glacials. We hypothesize that this muted response may be related to macronutrient (co-)limitation imposed on phytoplankton growth possibly induced by a northward displacement of wind-driven upwelling and/or the polar frontal system during peak glacials. The Antarctic Zone (AZ) record depicts the typical pattern of enhanced export production during interglacials and comparatively low productivity during glacials suggesting a decrease in the supply of macronutrients to the AZ surface during ice ages compared to warm periods, as previously proposed. However, a muted response of opal fluxes during marine isotope stage (MIS) 5e argues for a southward migration of the frontal system during warmer MIS 5e, possibly causing silicic acid (co-)limitation at this site.
File(s)
File | File Type | Format | Size | License | Publisher/Copright statement | Content | |
---|---|---|---|---|---|---|---|
Thöle et al., 19.pdf | text | Adobe PDF | 6.95 MB | publisher | published |