• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Protein Aggregation on Metal Oxides Governs Catalytic Activity and Cellular Uptake.
 

Protein Aggregation on Metal Oxides Governs Catalytic Activity and Cellular Uptake.

Options
  • Details
BORIS DOI
10.48350/195507
Date of Publication
August 2024
Publication Type
Article
Division/Institute

Universitätsklinik fü...

Institut für Tierpath...

Universitätsklinik fü...

Contributor
Nißler, Robert
Dennebouy, Lena
Gogos, Alexander
Gerken, Lukas R H
Dommke, Maximilian
Zimmermann, Monika
Pais, Michael-Alexander
Universitätsklinik für Plastische- und Handchirurgie
Neuer, Anna L
Matter, Martin T
Kissling, Vera M
De Brot, Simone Danielle
Institut für Tierpathologie (ITPA)
Lese, Ioanaorcid-logo
Universitätsklinik für Plastische- und Handchirurgie, Plastische, Rekonstruktive und Ästhetische Chirurgie
Universitätsklinik für Plastische- und Handchirurgie
Herrmann, Inge K
Subject(s)

600 - Technology::610...

600 - Technology::630...

Series
Small
ISSN or ISBN (if monograph)
1613-6810
Publisher
Wiley-VCH
Language
English
Publisher DOI
10.1002/smll.202311115
PubMed ID
38556634
Uncontrolled Keywords

metal oxides nanocata...

Description
Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/176399
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
Small_-_2024_-_Ni_ler_-_Protein_Aggregation_on_Metal_Oxides_Governs_Catalytic_Activity_and_Cellular_Uptake.pdftextAdobe PDF4.91 MBpublishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 960e9e [21.08. 13:49]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo