Using generative artificial intelligence in bibliometric analysis: 10 years of research trends from the European Resuscitation Congresses.
Options
BORIS DOI
Date of Publication
June 2024
Publication Type
Article
Division/Institute
Contributor
Fijačko, Nino | |
Creber, Ruth Masterson | |
Abella, Benjamin S | |
Kocbek, Primož | |
Metličar, Špela | |
Štiglic, Gregor |
Subject(s)
Series
Resuscitation Plus
ISSN or ISBN (if monograph)
2666-5204
Publisher
Elsevier
Language
English
Publisher DOI
PubMed ID
38420596
Uncontrolled Keywords
Description
AIMS
The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade.
METHODS
In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal's website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics.
RESULTS
From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were Adult basic life support (50.1%), followed by Adult advanced life support (41.5%), while Newborn resuscitation and support of transition of infants at birth (2.1%) was the least common topic. The findings also highlight that the Basic Life Support and Adult Advanced Life Support ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the Newborn resuscitation and support of transition of infants at birth (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence.
CONCLUSION
This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models.
The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade.
METHODS
In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal's website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics.
RESULTS
From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were Adult basic life support (50.1%), followed by Adult advanced life support (41.5%), while Newborn resuscitation and support of transition of infants at birth (2.1%) was the least common topic. The findings also highlight that the Basic Life Support and Adult Advanced Life Support ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the Newborn resuscitation and support of transition of infants at birth (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence.
CONCLUSION
This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models.
File(s)
File | File Type | Format | Size | License | Publisher/Copright statement | Content | |
---|---|---|---|---|---|---|---|
1-s2.0-S2666520424000353-main.pdf | text | Adobe PDF | 959.34 KB | Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) | published |