Publication:
Using generative artificial intelligence in bibliometric analysis: 10 years of research trends from the European Resuscitation Congresses.

cris.virtual.author-orcid0000-0003-0160-2073
cris.virtualsource.author-orcid3e5f9518-08b5-4b2c-8b0f-3b03d7aad0bb
datacite.rightsopen.access
dc.contributor.authorFijačko, Nino
dc.contributor.authorCreber, Ruth Masterson
dc.contributor.authorAbella, Benjamin S
dc.contributor.authorKocbek, Primož
dc.contributor.authorMetličar, Špela
dc.contributor.authorGreif, Robert
dc.contributor.authorŠtiglic, Gregor
dc.date.accessioned2024-10-26T17:27:04Z
dc.date.available2024-10-26T17:27:04Z
dc.date.issued2024-06
dc.description.abstractAIMS The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade. METHODS In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal's website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics. RESULTS From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were Adult basic life support (50.1%), followed by Adult advanced life support (41.5%), while Newborn resuscitation and support of transition of infants at birth (2.1%) was the least common topic. The findings also highlight that the Basic Life Support and Adult Advanced Life Support ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the Newborn resuscitation and support of transition of infants at birth (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence. CONCLUSION This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models.
dc.description.sponsorshipUniversitätsklinik für Anästhesiologie und Schmerztherapie
dc.identifier.doi10.48350/193637
dc.identifier.pmid38420596
dc.identifier.publisherDOI10.1016/j.resplu.2024.100584
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/175040
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofResuscitation Plus
dc.relation.issn2666-5204
dc.relation.organizationDCD5A442BADCE17DE0405C82790C4DE2
dc.subjectBibliometrics analysis Congress Emergency medicine European Resuscitation Council Generative artificial intelligence
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleUsing generative artificial intelligence in bibliometric analysis: 10 years of research trends from the European Resuscitation Congresses.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue100584
oaire.citation.volume18
oairecerif.author.affiliationUniversitätsklinik für Anästhesiologie und Schmerztherapie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-03-05 14:27:18
unibe.description.ispublishedpub
unibe.eprints.legacyId193637
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
1-s2.0-S2666520424000353-main.pdf
Size:
959.34 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
published

Collections