• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. An APRI+ALBI Based Multivariable Model as Preoperative Predictor for Posthepatectomy Liver Failure.
 

An APRI+ALBI Based Multivariable Model as Preoperative Predictor for Posthepatectomy Liver Failure.

Options
  • Details
BORIS DOI
10.48350/187329
Date of Publication
2025
Publication Type
Article
Division/Institute

Universitätsklinik fü...

Universitätsklinik fü...

Contributor
Santol, Jonas
Kim, Sarang
Gregory, Lindsey A
Baumgartner, Ruth
Murtha-Lemekhova, Anastasia
Birgin, Emrullah
Gloor, Severin
Universitätsklinik für Viszerale Chirurgie und Medizin
Braunwarth, Eva
Ammann, Markus
Starlinger, Johannes
Pereyra, David
Ammon, Daphni
Ninkovic, Marijana
Kern, Anna E
Rumpf, Benedikt
Ortmayr, Gregor
Herrmann, Yannic
Dong, Yawen
Huber, Felix X
Weninger, Jeremias
Thiels, Cornelius A
Warner, Susanne G
Smoot, Rory L
Truty, Mark J
Kendrick, Michael L
Nagorney, David N
Cleary, Sean P
Beldi, Guidoorcid-logo
Universitätsklinik für Viszerale Chirurgie und Medizin - Viszeral- und Transplantationschirurgie
Universitätsklinik für Viszerale Chirurgie und Medizin - Viszeral- und Transplantationschirurgie
Rahbari, Nuh N
Hoffmann, Katrin
Gilg, Stefan
Assinger, Alice
Gruenberger, Thomas
Hackl, Hubert
Starlinger, Patrick
Subject(s)

600 - Technology::610...

Series
Annals of surgery
ISSN or ISBN (if monograph)
1528-1140
Publisher
Wolters Kluwer Health
Language
English
Publisher DOI
10.1097/SLA.0000000000006127
PubMed ID
37860868
Description
OBJECTIVE AND BACKGROUND

Clinically significant posthepatectomy liver failure (PHLF B+C) remains the main cause of mortality after major hepatic resection. This study aimed to establish an APRI+ALBI, aspartate aminotransferase to platelet ratio (APRI) combined with albumin-bilirubin grade (ALBI), based multivariable model (MVM) to predict PHLF and compare its performance to indocyanine green clearance (ICG-R15 or ICG-PDR) and albumin-ICG evaluation (ALICE).

METHODS

12,056 patients from the National Surgical Quality Improvement Program (NSQIP) database were used to generate a MVM to predict PHLF B+C. The model was determined using stepwise backwards elimination. Performance of the model was tested using receiver operating characteristic curve analysis and validated in an international cohort of 2,525 patients. In 620 patients, the APRI+ALBI MVM, trained in the NSQIP cohort, was compared with MVM's based on other liver function tests (ICG clearance, ALICE) by comparing the areas under the curve (AUC).

RESULTS

A MVM including APRI+ALBI, age, sex, tumor type and extent of resection was found to predict PHLF B+C with an AUC of 0.77, with comparable performance in the validation cohort (AUC 0.74). In direct comparison with other MVM's based on more expensive and time-consuming liver function tests (ICG clearance, ALICE), the APRI+ALBI MVM demonstrated equal predictive potential for PHLF B+C. A smartphone application for calculation of the APRI+ALBI MVM was designed.

CONCLUSION

Risk assessment via the APRI+ALBI MVM for PHLF B+C increases preoperative predictive accuracy and represents an universally available and cost-effective risk assessment prior to hepatectomy, facilitated by a freely available smartphone app.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/170781
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
an_apri_albi_based_multivariable_model_as.676.pdftextAdobe PDF804.92 KBAttribution (CC BY 4.0)acceptedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo