• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Justifying induction on modal μ-formulae
 

Justifying induction on modal μ-formulae

Options
  • Details
BORIS DOI
10.7892/boris.61785
Date of Publication
2014
Publication Type
Article
Division/Institute

Institut für Informat...

Contributor
Alberucci, Luca
Institut für Informatik und angewandte Mathematik (IAM)
Krähenbühl, Jürg
Institut für Informatik und angewandte Mathematik (IAM)
Studer, Thomasorcid-logo
Institut für Informatik und angewandte Mathematik (IAM)
Subject(s)

000 - Computer scienc...

500 - Science::510 - ...

Series
Logic Journal of IGPL
ISSN or ISBN (if monograph)
1367-0751
Publisher
Oxford University Press
Language
English
Publisher DOI
10.1093/jigpal/jzu001
Description
We define a rank function for formulae of the propositional modal μ-calculus such that the rank of a fixed point is strictly bigger than the rank of any of its finite approximations. A rank function of this kind is needed, for instance, to establish the collapse of the modal μ-hierarchy over transitive transition systems. We show that the range of the rank function is ωω. Further we establish that the rank is computable by primitive recursion, which gives us a uniform method to generate formulae of arbitrary rank below ωω.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/128375
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
aks14.pdftextAdobe PDF257.25 KBsubmittedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo