• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Structure, sequon recognition and mechanism of tryptophan C-mannosyltransferase.
 

Structure, sequon recognition and mechanism of tryptophan C-mannosyltransferase.

Options
  • Details
BORIS DOI
10.48350/176941
Date of Publication
May 2023
Publication Type
Article
Division/Institute

Departement für Chemi...

Contributor
Bloch, Joël S
John, Alan
Mao, Runyu
Mukherjee, Somnath
Boilevin, Jérémy Mathias
Departement für Chemie, Biochemie und Pharmazie (DCBP) Universität Bern
Irobalieva, Rossitza N
Darbre, Tamis
Departement für Chemie, Biochemie und Pharmazie (DCBP) Universität Bern
Scott, Nichollas E
Reymond, Jean-Louis
Departement für Chemie, Biochemie und Pharmazie (DCBP) Universität Bern
Kossiakoff, Anthony A
Goddard-Borger, Ethan D
Locher, Kaspar P
Subject(s)

500 - Science::570 - ...

500 - Science::540 - ...

600 - Technology::610...

Series
Nature chemical biology
ISSN or ISBN (if monograph)
1552-4469
Publisher
Springer Nature
Language
en
Publisher DOI
10.1038/s41589-022-01219-9
PubMed ID
36604564
Description
C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/116958
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
s41589-022-01219-9.pdftextAdobe PDF8.18 MBAttribution (CC BY 4.0)publishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo