Publication: Overcoming limitations in current measures of drug response may enable AI-driven precision oncology.
cris.virtualsource.author-orcid | 785f947a-a84f-4b9a-be6c-2a1d3a20fe55 | |
cris.virtualsource.author-orcid | 80dbdb29-1dca-451b-810a-6a7b84ba141a | |
cris.virtualsource.author-orcid | 525155e4-af3a-4505-b350-0410e7ccadcb | |
datacite.rights | open.access | |
dc.contributor.author | Ovchinnikova, Katja | |
dc.contributor.author | Born, Jannis | |
dc.contributor.author | Chouvardas, Panagiotis | |
dc.contributor.author | Rapsomaniki, Marianna | |
dc.contributor.author | Kruithof-de Julio, Marianna | |
dc.date.accessioned | 2024-10-26T17:56:45Z | |
dc.date.available | 2024-10-26T17:56:45Z | |
dc.date.issued | 2024-04-24 | |
dc.description.abstract | Machine learning (ML) models of drug sensitivity prediction are becoming increasingly popular in precision oncology. Here, we identify a fundamental limitation in standard measures of drug sensitivity that hinders the development of personalized prediction models - they focus on absolute effects but do not capture relative differences between cancer subtypes. Our work suggests that using z-scored drug response measures mitigates these limitations and leads to meaningful predictions, opening the door for sophisticated ML precision oncology models. | |
dc.description.sponsorship | Department for BioMedical Research (DBMR) | |
dc.description.sponsorship | Universitätsklinik für Urologie | |
dc.identifier.doi | 10.48350/196220 | |
dc.identifier.pmid | 38658785 | |
dc.identifier.publisherDOI | 10.1038/s41698-024-00583-0 | |
dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/176964 | |
dc.language.iso | en | |
dc.publisher | Springer Nature | |
dc.relation.ispartof | NPJ precision oncology | |
dc.relation.issn | 2397-768X | |
dc.relation.organization | DCD5A442BE73E17DE0405C82790C4DE2 | |
dc.relation.organization | DCD5A442C238E17DE0405C82790C4DE2 | |
dc.relation.organization | DCD5A442BD18E17DE0405C82790C4DE2 | |
dc.subject.ddc | 600 - Technology::610 - Medicine & health | |
dc.title | Overcoming limitations in current measures of drug response may enable AI-driven precision oncology. | |
dc.type | article | |
dspace.entity.type | Publication | |
dspace.file.type | text | |
oaire.citation.issue | 95 | |
oaire.citation.volume | 8 | |
oairecerif.author.affiliation | Department for BioMedical Research (DBMR) | |
oairecerif.author.affiliation | Universitätsklinik für Urologie | |
oairecerif.author.affiliation | Universitätsklinik für Urologie | |
oairecerif.author.affiliation2 | Department for BioMedical Research, Forschungsgruppe Urologie | |
oairecerif.author.affiliation2 | Department for BioMedical Research (DBMR) | |
oairecerif.author.affiliation2 | Department for BioMedical Research, Forschungsgruppe Urologie | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.date.licenseChanged | 2024-04-25 10:31:16 | |
unibe.description.ispublished | pub | |
unibe.eprints.legacyId | 196220 | |
unibe.journal.abbrevTitle | NPJ PRECIS ONCOL | |
unibe.refereed | true | |
unibe.subtype.article | journal |
Files
Original bundle
1 - 1 of 1
- Name:
- s41698-024-00583-0.pdf
- Size:
- 1.44 MB
- Format:
- Adobe Portable Document Format
- File Type:
- text
- License:
- https://creativecommons.org/licenses/by/4.0
- Content:
- published