Publication:
Overcoming limitations in current measures of drug response may enable AI-driven precision oncology.

cris.virtualsource.author-orcid785f947a-a84f-4b9a-be6c-2a1d3a20fe55
cris.virtualsource.author-orcid80dbdb29-1dca-451b-810a-6a7b84ba141a
cris.virtualsource.author-orcid525155e4-af3a-4505-b350-0410e7ccadcb
datacite.rightsopen.access
dc.contributor.authorOvchinnikova, Katja
dc.contributor.authorBorn, Jannis
dc.contributor.authorChouvardas, Panagiotis
dc.contributor.authorRapsomaniki, Marianna
dc.contributor.authorKruithof-de Julio, Marianna
dc.date.accessioned2024-10-26T17:56:45Z
dc.date.available2024-10-26T17:56:45Z
dc.date.issued2024-04-24
dc.description.abstractMachine learning (ML) models of drug sensitivity prediction are becoming increasingly popular in precision oncology. Here, we identify a fundamental limitation in standard measures of drug sensitivity that hinders the development of personalized prediction models - they focus on absolute effects but do not capture relative differences between cancer subtypes. Our work suggests that using z-scored drug response measures mitigates these limitations and leads to meaningful predictions, opening the door for sophisticated ML precision oncology models.
dc.description.sponsorshipDepartment for BioMedical Research (DBMR)
dc.description.sponsorshipUniversitätsklinik für Urologie
dc.identifier.doi10.48350/196220
dc.identifier.pmid38658785
dc.identifier.publisherDOI10.1038/s41698-024-00583-0
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/176964
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.ispartofNPJ precision oncology
dc.relation.issn2397-768X
dc.relation.organizationDCD5A442BE73E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C238E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BD18E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleOvercoming limitations in current measures of drug response may enable AI-driven precision oncology.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue95
oaire.citation.volume8
oairecerif.author.affiliationDepartment for BioMedical Research (DBMR)
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliation2Department for BioMedical Research, Forschungsgruppe Urologie
oairecerif.author.affiliation2Department for BioMedical Research (DBMR)
oairecerif.author.affiliation2Department for BioMedical Research, Forschungsgruppe Urologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-04-25 10:31:16
unibe.description.ispublishedpub
unibe.eprints.legacyId196220
unibe.journal.abbrevTitleNPJ PRECIS ONCOL
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41698-024-00583-0.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections