• LOGIN
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publication
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Overcoming limitations in current measures of drug response may enable AI-driven precision oncology.
 

Overcoming limitations in current measures of drug response may enable AI-driven precision oncology.

Options
  • Details
BORIS DOI
10.48350/196220
Date of Publication
April 24, 2024
Publication Type
Article
Division/Institute

Department for BioMed...

Universitätsklinik fü...

Author
Ovchinnikova, Katja
Department for BioMedical Research (DBMR)
Department for BioMedical Research, Forschungsgruppe Urologie
Born, Jannis
Chouvardas, Panagiotis
Universitätsklinik für Urologie
Department for BioMedical Research (DBMR)
Rapsomaniki, Marianna
Kruithof-de Julio, Marianna
Universitätsklinik für Urologie
Department for BioMedical Research, Forschungsgruppe Urologie
Subject(s)

600 - Technology::610...

Series
NPJ precision oncology
ISSN or ISBN (if monograph)
2397-768X
Publisher
Springer Nature
Language
English
Publisher DOI
10.1038/s41698-024-00583-0
PubMed ID
38658785
Description
Machine learning (ML) models of drug sensitivity prediction are becoming increasingly popular in precision oncology. Here, we identify a fundamental limitation in standard measures of drug sensitivity that hinders the development of personalized prediction models - they focus on absolute effects but do not capture relative differences between cancer subtypes. Our work suggests that using z-scored drug response measures mitigates these limitations and leads to meaningful predictions, opening the door for sophisticated ML precision oncology models.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/176964
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
s41698-024-00583-0.pdftextAdobe PDF1.44 MBpublishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: b407eb [23.05. 15:47]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo