Publication:
Modelling the lymphatic metastatic progression pathways of OPSCC from multi-institutional datasets.

cris.virtual.author-orcid0000-0003-0948-1392
cris.virtualsource.author-orcid86655b3e-7b2d-49ef-959d-01183a03e32b
cris.virtualsource.author-orcid77241cdc-4d8c-4d18-9987-58a73b2097d1
cris.virtualsource.author-orcid3d7076a2-8835-49ed-8d2f-794a5ccd91e1
cris.virtualsource.author-orcid900188c6-9c50-40ae-91fc-67f39e89ffd7
datacite.rightsopen.access
dc.contributor.authorLudwig, Roman
dc.contributor.authorSchubert, Adrian
dc.contributor.authorBarbatei, Dorothea
dc.contributor.authorBauwens, Lauence
dc.contributor.authorHoffmann, Jean-Marc
dc.contributor.authorWerlen, Sandrine
dc.contributor.authorEliçin, Olgun
dc.contributor.authorDettmer, Matthias
dc.contributor.authorZrounba, Philippe
dc.contributor.authorPouymayou, Bertrand
dc.contributor.authorBalermpas, Panagiotis
dc.contributor.authorGrégoire, Vincent
dc.contributor.authorGiger, Roland
dc.contributor.authorUnkelbach, Jan
dc.date.accessioned2024-10-26T18:29:11Z
dc.date.available2024-10-26T18:29:11Z
dc.date.issued2024-07-08
dc.description.abstractThe elective clinical target volume (CTV-N) in oropharyngeal squamous cell carcinoma (OPSCC) is currently based mostly on the prevalence of lymph node metastases in different lymph node levels (LNLs) for a given primary tumor location. We present a probabilistic model for ipsilateral lymphatic spread that can quantify the microscopic nodal involvement risk based on an individual patient's T-category and clinical involvement of LNLs at diagnosis. We extend a previously published hidden Markov model (HMM), which models the LNLs (I, II, III, IV, V, and VII) as hidden binary random variables (RVs). Each represents a patient's true state of lymphatic involvement. Clinical involvement at diagnosis represents the observed binary RVs linked to the true state via sensitivity and specificity. The primary tumor and the hidden RVs are connected in a graph. Each edge represents the conditional probability of metastatic spread per abstract time-step, given disease at the edge's starting node. To learn these probabilities, we draw Markov chain Monte Carlo samples from the likelihood of a dataset (686 OPSCC patients) from three institutions. We compute the model evidence using thermodynamic integration for different graphs to determine which describes the data best.The graph maximizing the model evidence connects the tumor to each LNL and the LNLs I through V in order. It predicts the risk of occult disease in level IV is below 5% if level III is clinically negative, and that the risk of occult disease in level V is below 5% except for advanced T-category (T3 and T4) patients with clinical involvement of levels II, III, and IV. The provided statistical model of nodal involvement in OPSCC patients trained on multi-institutional data may guide the design of clinical trials on volume-deescalated treatment of OPSCC and contribute to more personal guidelines on elective nodal treatment.
dc.description.sponsorshipUniversitätsklinik für Radio-Onkologie
dc.description.sponsorshipInstitut für Gewebemedizin und Pathologie
dc.description.sponsorshipUniversitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Kopf- und Halschirurgie (HNOK)
dc.identifier.doi10.48350/198713
dc.identifier.pmid38977731
dc.identifier.publisherDOI10.1038/s41598-024-66012-1
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/178916
dc.language.isoen
dc.publisherNature Publishing Group
dc.relation.ispartofScientific Reports
dc.relation.issn2045-2322
dc.relation.organizationDCD5A442BB1BE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BE2AE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BF89E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BAD6E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.titleModelling the lymphatic metastatic progression pathways of OPSCC from multi-institutional datasets.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue15750
oaire.citation.volume14
oairecerif.author.affiliationUniversitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Kopf- und Halschirurgie (HNOK)
oairecerif.author.affiliationUniversitätsklinik für Radio-Onkologie
oairecerif.author.affiliationInstitut für Gewebemedizin und Pathologie
oairecerif.author.affiliationUniversitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Kopf- und Halschirurgie (HNOK)
oairecerif.author.affiliation2Institut für Gewebemedizin und Pathologie - Klinische Pathologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-07-10 06:07:17
unibe.description.ispublishedpub
unibe.eprints.legacyId198713
unibe.journal.abbrevTitleSci Rep
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41598-024-66012-1.pdf
Size:
4.73 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections