• LOGIN
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publication
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Modelling the lymphatic metastatic progression pathways of OPSCC from multi-institutional datasets.
 

Modelling the lymphatic metastatic progression pathways of OPSCC from multi-institutional datasets.

Options
  • Details
BORIS DOI
10.48350/198713
Date of Publication
July 8, 2024
Publication Type
Article
Division/Institute

Universitätsklinik fü...

Institut für Gewebeme...

Universitätsklinik fü...

Author
Ludwig, Roman
Schubert, Adrian
Universitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Kopf- und Halschirurgie (HNOK)
Barbatei, Dorothea
Bauwens, Lauence
Hoffmann, Jean-Marc
Werlen, Sandrine
Eliçin, Olgun
Universitätsklinik für Radio-Onkologie
Dettmer, Matthiasorcid-logo
Institut für Gewebemedizin und Pathologie
Institut für Gewebemedizin und Pathologie - Klinische Pathologie
Zrounba, Philippe
Pouymayou, Bertrand
Balermpas, Panagiotis
Grégoire, Vincent
Giger, Roland
Universitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Kopf- und Halschirurgie (HNOK)
Unkelbach, Jan
Subject(s)

600 - Technology::610...

500 - Science::570 - ...

Series
Scientific Reports
ISSN or ISBN (if monograph)
2045-2322
Publisher
Nature Publishing Group
Language
English
Publisher DOI
10.1038/s41598-024-66012-1
PubMed ID
38977731
Description
The elective clinical target volume (CTV-N) in oropharyngeal squamous cell carcinoma (OPSCC) is currently based mostly on the prevalence of lymph node metastases in different lymph node levels (LNLs) for a given primary tumor location. We present a probabilistic model for ipsilateral lymphatic spread that can quantify the microscopic nodal involvement risk based on an individual patient's T-category and clinical involvement of LNLs at diagnosis. We extend a previously published hidden Markov model (HMM), which models the LNLs (I, II, III, IV, V, and VII) as hidden binary random variables (RVs). Each represents a patient's true state of lymphatic involvement. Clinical involvement at diagnosis represents the observed binary RVs linked to the true state via sensitivity and specificity. The primary tumor and the hidden RVs are connected in a graph. Each edge represents the conditional probability of metastatic spread per abstract time-step, given disease at the edge's starting node. To learn these probabilities, we draw Markov chain Monte Carlo samples from the likelihood of a dataset (686 OPSCC patients) from three institutions. We compute the model evidence using thermodynamic integration for different graphs to determine which describes the data best.The graph maximizing the model evidence connects the tumor to each LNL and the LNLs I through V in order. It predicts the risk of occult disease in level IV is below 5% if level III is clinically negative, and that the risk of occult disease in level V is below 5% except for advanced T-category (T3 and T4) patients with clinical involvement of levels II, III, and IV. The provided statistical model of nodal involvement in OPSCC patients trained on multi-institutional data may guide the design of clinical trials on volume-deescalated treatment of OPSCC and contribute to more personal guidelines on elective nodal treatment.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/178916
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
s41598-024-66012-1.pdftextAdobe PDF4.73 MBAttribution (CC BY 4.0)publishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: d1c7f7 [27.06. 13:56]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo