Publication:
The Blinder-Oaxaca decomposition for linear regression models

cris.virtual.author-orcid0000-0001-9855-1967
cris.virtualsource.author-orciddc0a64d1-ffcf-4259-a158-904e1504819d
dc.contributor.authorJann, Ben
dc.date.accessioned2024-10-23T18:18:02Z
dc.date.available2024-10-23T18:18:02Z
dc.date.issued2008
dc.description.abstractThe counterfactual decomposition technique popularized by Blinder (1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International Economic Review, 693–709) is widely used to study mean outcome differences between groups. For example, the technique is often used to analyze wage gaps by sex or race. This article summarizes the technique and addresses several complications, such as the identification of effects of categorical predictors in the detailed decomposition or the estimation of standard errors. A new command called oaxaca is introduced, and examples illustrating its usage are given.
dc.description.numberOfPages27
dc.description.sponsorshipInstitut für Soziologie
dc.identifier.doi10.7892/boris.67672
dc.identifier.publisherDOI10.1177/1536867X0800800401
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/132565
dc.language.isoen
dc.publisherStata Press
dc.relation.ispartofStata journal
dc.relation.issn1536-867X
dc.relation.organizationDCD5A442BB99E17DE0405C82790C4DE2
dc.subjectst0151
dc.subjectoaxaca
dc.subjectBlinder–Oaxaca decomposition
dc.subjectoutcome differential
dc.subjectwage gap
dc.subject.ddc300 - Social sciences, sociology & anthropology
dc.titleThe Blinder-Oaxaca decomposition for linear regression models
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage479
oaire.citation.issue4
oaire.citation.startPage453
oaire.citation.volume8
oairecerif.author.affiliationInstitut für Soziologie
oairecerif.identifier.urlhttp://www.stata-journal.com/article.html?article=st0151
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId67672
unibe.journal.abbrevTitleSTATA J
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
st0151.pdf
Size:
252.25 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections