• LOGIN
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publication
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. The Blinder-Oaxaca decomposition for linear regression models
 

The Blinder-Oaxaca decomposition for linear regression models

Options
  • Details
BORIS DOI
10.7892/boris.67672
Date of Publication
2008
Publication Type
Article
Division/Institute

Institut für Soziolog...

Author
Jann, Benorcid-logo
Institut für Soziologie
Subject(s)

300 - Social sciences...

Series
Stata journal
ISSN or ISBN (if monograph)
1536-867X
Publisher
Stata Press
Language
English
Publisher DOI
10.1177/1536867X0800800401
Uncontrolled Keywords

st0151

oaxaca

Blinder–Oaxaca decomp...

outcome differential

wage gap

Description
The counterfactual decomposition technique popularized by Blinder (1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International Economic Review, 693–709) is widely used to study mean outcome differences between groups. For example, the technique is often used to analyze wage gaps by sex or race. This article summarizes the technique and addresses several complications, such as the identification of effects of categorical predictors in the detailed decomposition or the estimation of standard errors. A new command called oaxaca is introduced, and examples illustrating its usage are given.
Related URL
http://www.stata-journal.com/article.html?article=st0151
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/132565
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
st0151.pdftextAdobe PDF252.25 KBpublisherpublished restricted
BORIS Portal
Bern Open Repository and Information System
Build: 360c85 [14.04. 8:05]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo