Publication:
Deep Transfer Learning: A Fast and Accurate Tool to Predict the Energy Levels of Donor Molecules for Organic Photovoltaics

cris.virtual.author-orcid0000-0003-3306-7204
cris.virtual.author-orcid0000-0001-9181-2642
cris.virtualsource.author-orcid941e046f-799b-4a4d-98ab-7e99eb17271e
cris.virtualsource.author-orcid7f48a305-ca40-49e3-8540-ec4565296ed8
cris.virtualsource.author-orcid80c8633e-c5fb-4801-9640-19851caced29
datacite.rightsopen.access
dc.contributor.authorMoore, Gareth John
dc.contributor.authorBardagot, Olivier Nicolas Ludovic
dc.contributor.authorBanerji, Natalie
dc.date.accessioned2024-10-09T17:21:55Z
dc.date.available2024-10-09T17:21:55Z
dc.date.issued2022-02-23
dc.description.abstractMolecular engineering is driving the recent efficiency leaps in organicphotovoltaics (OPVs). A presynthetic determination of frontier energy levelsmakes the screening of potential molecules more efficient, exhaustive, andcost-effective. Here, a convolutional neural network is developed to predictthe highest occupied and lowest unoccupied molecular orbital(HOMO/LUMO) levels of donor molecules for OPV. The model takes a 2Dstructure image and returns a prediction of its HOMO/LUMO levelscomparable to experimental values. Insufficient experimental datasets areovercome with transfer learning where the model is initially trained on thelarge Harvard Clean Energy Project dataset and then fine-tuned usingexperimental data from the Harvard Organic Photovoltaic dataset. Errormargins on predicted HOMO/LUMO levels below 200 meV are achieved,without any chemical knowledge implemented. Noticeably, the model outputshave higher accuracy and precision than corresponding density functionaltheory (DFT) estimations. The model and its limitations are further tested ona home-built dataset of commercially available donor polymers reported inOPVs (e.g., P3HT, PTB7-Th, PM6, D18). The results demonstrate both thepractical utility of this model, to foster rational molecular engineering for OPVoptimization, and the potential for deep learning techniques, in general, torevolutionize the energy materials research and development sector.
dc.description.sponsorshipDepartement für Chemie, Biochemie und Pharmazie (DCBP)
dc.identifier.doi10.48350/168360
dc.identifier.publisherDOI10.1002/adts.202100511
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/69554
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofAdvanced theory and simulations
dc.relation.issn2513-0390
dc.relation.organizationDCD5A442C14DE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::540 - Chemistry
dc.titleDeep Transfer Learning: A Fast and Accurate Tool to Predict the Energy Levels of Donor Molecules for Organic Photovoltaics
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue5
oaire.citation.startPage2100511
oaire.citation.volume5
oairecerif.author.affiliationDepartement für Chemie, Biochemie und Pharmazie (DCBP)
oairecerif.author.affiliationDepartement für Chemie, Biochemie und Pharmazie (DCBP)
oairecerif.author.affiliationDepartement für Chemie, Biochemie und Pharmazie (DCBP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-04-06 08:56:01
unibe.description.ispublishedpub
unibe.eprints.legacyId168360
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Advcd_Theory_and_Sims_-_2022_-_Moore_-_Deep_Transfer_Learning__A_Fast_and_Accurate_Tool_to_Predict_the_Energy_Levels_of.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections