• LOGIN
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publication
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Deep Transfer Learning: A Fast and Accurate Tool to Predict the Energy Levels of Donor Molecules for Organic Photovoltaics
 

Deep Transfer Learning: A Fast and Accurate Tool to Predict the Energy Levels of Donor Molecules for Organic Photovoltaics

Options
  • Details
BORIS DOI
10.48350/168360
Date of Publication
February 23, 2022
Publication Type
Article
Division/Institute

Departement für Chemi...

Author
Moore, Gareth John
Departement für Chemie, Biochemie und Pharmazie (DCBP)
Bardagot, Olivier Nicolas Ludovicorcid-logo
Departement für Chemie, Biochemie und Pharmazie (DCBP)
Banerji, Natalieorcid-logo
Departement für Chemie, Biochemie und Pharmazie (DCBP)
Subject(s)

500 - Science::540 - ...

Series
Advanced theory and simulations
ISSN or ISBN (if monograph)
2513-0390
Publisher
Wiley
Language
English
Publisher DOI
10.1002/adts.202100511
Description
Molecular engineering is driving the recent efficiency leaps in organicphotovoltaics (OPVs). A presynthetic determination of frontier energy levelsmakes the screening of potential molecules more efficient, exhaustive, andcost-effective. Here, a convolutional neural network is developed to predictthe highest occupied and lowest unoccupied molecular orbital(HOMO/LUMO) levels of donor molecules for OPV. The model takes a 2Dstructure image and returns a prediction of its HOMO/LUMO levelscomparable to experimental values. Insufficient experimental datasets areovercome with transfer learning where the model is initially trained on thelarge Harvard Clean Energy Project dataset and then fine-tuned usingexperimental data from the Harvard Organic Photovoltaic dataset. Errormargins on predicted HOMO/LUMO levels below 200 meV are achieved,without any chemical knowledge implemented. Noticeably, the model outputshave higher accuracy and precision than corresponding density functionaltheory (DFT) estimations. The model and its limitations are further tested ona home-built dataset of commercially available donor polymers reported inOPVs (e.g., P3HT, PTB7-Th, PM6, D18). The results demonstrate both thepractical utility of this model, to foster rational molecular engineering for OPVoptimization, and the potential for deep learning techniques, in general, torevolutionize the energy materials research and development sector.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/69554
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
Advcd_Theory_and_Sims_-_2022_-_Moore_-_Deep_Transfer_Learning__A_Fast_and_Accurate_Tool_to_Predict_the_Energy_Levels_of.pdftextAdobe PDF1.3 MBpublishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: d1c7f7 [27.06. 13:56]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo