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Abstract 

Computer tomography (CT)-based finite element (FE) models assess vertebral strength better 

than dual energy X-ray absorptiometry. Osteoporotic vertebrae are usually loaded via 

degenerated intervertebral discs (IVD) and potentially at higher risk under forward bending, 

but the influences of the IVD and loading conditions are generally overlooked. Accordingly, 

Magnetic Resonance Imaging was performed on 14 lumbar discs to generate FE models for 

the healthiest and most degenerated specimens. Compression, torsion, bending, flexion and 

extension conducted experimentally were used to calibrate both models. They were combined 

with CT-based FE models of 12 lumbar vertebral bodies to evaluate the effect of disc 

degeneration compared to a loading via endplates embedded in a stiff resin, the usual 

experimental paradigm. Compression and lifting were simulated, load and damage pattern 

were evaluated at failure. Adding flexion to the compression (lifting) and higher disc 

degeneration reduces the failure load (8-14%, 5-7%) and increases damage in the vertebrae. 

Under both loading scenarios, decreasing the disc height slightly increases the failure load; 

embedding and degenerated IVD provides respectively the highest and lowest failure load. 

Embedded vertebrae are more brittle, but failure loads induced via IVDs correlate highly with 

vertebral strength. In conclusion, osteoporotic vertebrae with degenerated IVDs are 

consistently weaker - especially under lifting, but clinical assessment of their strength is 

possible via FE analysis without extensive disc modelling, by extrapolating measures from 

the embedded situation. 

Key words: finite element analysis, vertebral strength, osteoporosis, intervertebral 

disc degeneration, calibration   
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1. Introduction 

With nearly half a million cases a year in Europe, osteoporotic vertebral fractures are a 

widespread condition with tremendous costs and morbidity (Johnell and Kanis 2005). 

Osteoporosis is characterized by bone loss and impaired bone morphology. Fracture occurs 

when the load on a bone is larger than its overload or fatigue strength. Strength and mineral 

density (BMD) are therefore highly related and non-invasive radiographic techniques were 

developed to evaluate the fracture risk. Yet, as Dual energy X-ray absorptiometry (DXA), the 

clinical surrogate for strength, accounts neither for morphology, nor for local variation of 

bone density (Griffith and Genant 2008) or loading conditions, it explains less than 70% of 

the strength variability (Lochmüller et al. 2002).  

Quantitative computer tomography (QCT)-based finite element (FE) models of the vertebral 

body are used in clinical trials (Keaveny et al. 2007, Graeff et al. 2009, Chevalier et al. 2010, 

Graeff et al. 2013, Farahmand et al. 2013, Glüer et al. 2013, Kopperdahl et al. 2014) but not 

yet for diagnosis, although their strength predictions are more accurate than densitometric 

methods (Crawford et al. 2003, Dall’ara et al. 2012). To ensure uniform compression of the 

bone and overlook the degenerative states of elderly intervertebral discs (IVD) (Keller et al. 

1993), the endplates are trimmed (vertebral sections) or embedded in a stiff resin 

(polymethylmethacrylate, PMMA). Both methods are reproducible, validated (Dall’ara et al. 

2010, Chevalier et al. 2008) and highly correlated (Maquer et al. 2012) but common endplate 

failure cannot be replicated (Nekkanty et al. 2010, Maquer et al. 2014a). Compression 

overestimates the strength of osteoporotic vertebrae that are weaker under forward bending 

due to an altered trabecular structure (Homminga et al. 2004). The load distribution on the 

endplate is affected by alterations of the IVD due to degenerative processes (Adams and 

Roughley 2006). It seems relevant to account for the IVD in future FE analyses (Eswaran et 

al. 2007) but there is a lack of reliable degeneration-specific model (Lu et al. 2014). Most 

models are based on prior literature, with generic shapes and material properties (Fagan et al. 

2002, Weisse et al. 2012, Park et al. 2013) without considering the inter-individual and 

experimental variability (Jones and Wilcox 2008).  

Addressing these limitations, healthy and degenerated IVD models calibrated against in vitro 

tests and endplate embedding were used to load vertebral bodies under uniaxial compression 
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and lifting. The hypothesis of this study is that disc degeneration and forward flexion weaken 

osteoporotic vertebrae; its aim is to evaluate the influence of the loading conditions on the 

predicted vertebral failure load and damage distribution and to determine whether FE strength 

predictions would benefit from a better modelling of the IVD. 

1.1. Specimen-specific modelling of the intervertebral disc 

1.1.1. Preparation and selection of the specimens 

Fourteen spinal units (T12-L1, L2-L3, L4-L5) were extracted from 6 human lumbar 

spines and frozen (-20°C) after approval of the Ethics Committee of the Medical University 

of Vienna. The specimens were thawed at room temperature (20°C) 24h before neural arch 

and most soft tissues, but IVDs were removed. The free caudal and cranial endplates were 

embedded in a 10 mm-thick layer PMMA (Fig. 1). MRI imaging was performed on the 

specimens placed in a water-filled container (0.9% saline) to avoid drying and ensure loading 

of the RF coil. T1 weighted (TR = 999 ms, TE = 13 ms, 0.3 mm in-plane, 0.8 mm out-of-plane 

resolution) and quantitative T2 images (TR = 3650 ms, first echo: 12.5 ms, last echo: 275 ms, 

steps: 12.5 ms, 0.5 mm resolution) were acquired via a 3T system (Verio, Siemens 

Healthcare, Germany). The non-invasive evaluation of the specimens’ degeneration was done 

independently by 2 experts based on their mid-sagittal appearance (Thompson et al. 1990), 

transverse T2-maps (Watanabe et al. 2007) and Benneker score, validated against biochemical 

markers of degeneration (Benneker et al. 2005). The healthiest (Grade I) and most 

degenerated (Grade IV) spinal units were kept for testing. Please refer to Maquer et al. 2014b 

for more details. 
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1.1.2. MRI-based disc geometry 

MRI data was also used mesh both specimens and determine their dimensions (Fig. 1). 

The discs were semi-automatically segmented from the T1w images via ITKSnap (Yushkevich 

et al. 2006). Volume (V), cross-sectional area (CSA), average disc height (H) and size ratio 

(R) were determined (Eq. 1).  

CSA =  ∑ CSAi

N

i

          V =  ∑ Vi

M

i

          H =  
V

CSA
          R =

H

√CSA
     (1) 

V was evaluated by summing the volume of the disc’s voxels Vi (M voxels per disc) and 

CSA was computed by adding the CSAi of the disc’s voxels (N voxels per cross-section). A 

size ratio was obtained for the healthy (RI) and degenerated IVDs (RIV).  

The segmented volumes were imported in Solidworks as .stl meshes via ScanTo3D (Dassault 

Systèmes, France) and 2 solids were generated by fitting surface patches onto the smoothened 

meshes. Partition between NP and AF (42% volume ratio, Goto et al. 2002, Moramarco et al. 

2010, Wang et al. 2013) was performed on both solids that were meshed with quadratic 

tetrahedral elements in Cubit 12.2 (Sandia National Laboratory, USA). Element aspect ratio 

(Parthasarathy et al. 1994), condition number, scaled jacobian (Knupp et al. 2000), shape & 

size (Knupp et al. 2003), solution accuracy and CPU time required were evaluated and mesh 

and segmented volumes were compared.  

1.1.3. Disc constitutive model 

A time-independent constitutive law accounting for fibre dispersion around an average 

bundle direction was chosen (Gasser et al. 2006). It proved able to model annulus fibrosus 

(AF) (Malandrino et al. 2013) among other soft tissues (Pandolfi et al. 2008, Giordano et al. 
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2014). Neo-hookean material for the nucleus pulposus (NP) and AF’s ground substance (Eq. 

2) and Holzapfel-Gasser-Ogden (HGO) model for the annular fibres (Eq. 3) are available in 

Abaqus 6.13 (Dassault Systèmes, France). 

ψIso(C10, D) =  C10(J1 − 3) +  
1

D
{

(det(F))2−1

2
− ln (det (F))} (2) 

ψAniso(K1, K2, κ, α) =  
K1

2K2

{exp[K2(κJ1 + (1 − 3κ)Jf(α) − 1)2] − 1}    (3) 

With J1 = trace(C*) and Jf = a0C*a0, first and pseudo-invariant of the unimodular right 

Cauchy-Green deformation tensor C* (det C*= 1). Jf is equal to the square of the stretch in 

the initial bundle direction a0 = [cos(α), sin(α), 0]
t
. The law features 8 constants (Fig. 2). The 

parameters of AF’s matrix (𝐶10
𝐴𝐹 , 𝐷𝐴𝐹) and NP (𝐶10

𝑁𝑃, 𝐷𝑁𝑃) are related to Young’s modulus 

(E) and Poisson ratio (ν) via Eq. 4 (Holzapfel et al. 2006). 

𝐶10 =
𝐸

4(1+𝜈)
  and  𝐷 =

6(1−2𝜈)

𝐸
     (4) 

Two fibre families, active in tension (if Jf<1, ψAniso=0), were placed in opposite directions 

and circumferentially by rotating the element’s local coordinates system based on the AF’s 

contours. The fibre parameters K1, K2, κ and α stand for fibre stiffness, rate of stiffness 

increase due to fibre recruitment, fibres dispersion and angle of the bundle (Li et al. 2013). 

Perfect fibre alignment along the average bundle direction is given by κ = 0 and an isotropic 

distribution by κ = 1/3. Those constants were equal for both families and homogenous in the 

AF. 
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1.1.4. Parameters identification against biomechanical tests  

Five non-destructive quasi-static experiments were conducted successively (Fig. 3). 

Flexibility tests up to 8.5 Nm (Krismer et al. 2000) and compression up to 1300 N (Lin et al. 

1978) were conducted without deterioration of the disc. The first loading consisted in 5 

cycles of compression up to 1000 N were applied at 2000 N/min loading rate via a servo-

hydraulic device (MTS, Bionix, USA). Then, 5 cycles of pure moments (-5 to 5 Nm) were 

conducted at 0.8°/s on both specimens in flexion, extension, axial torsion and lateral bending 

via a spine testing device (Gédet et al. 2007, 2009) to avoid artificial constraints (Panjabi 

1988, Wilke et al. 1998a, Wilke et al. 1998b). A brushless DC motors (Maxon, Switzerland) 

applied the torque on the superior PMMA layer while the relative angular displacements of 

the vertebral bodies were computed from the positions of motion capture markers rigidly 

fixed to both layers (Optotrak 3020, Northern Digital, Canada, resolution 0.1 mm). 

Symmetrical behaviour was obtained in axial rotation (R
2 

= 0.96, p < 0.01) and lateral 

bending (R
2 

= 0.97, p < 0.01). More details are provided in (Maquer et al. 2014b and c). 

After a sensitivity study performed on 4 mesh densities, the loadings were simulated on the 

IVD FE models (Abaqus 6.13). To mimic the experiments, compression (1000 N), torsion, 

bending, flexion (5 Nm), extension (-5 Nm) were applied to the superior nodes of each mesh 

whose caudal surfaces were constrained. To identify the model parameters, 5 markers (Fig. 3) 

corresponding to displacements (u) at regular load increments (every 200 N or 1 Nm) were 

selected on each experimental and simulated dataset to account for the non-linearity of the 

load-deflection response. The average loading-unloading curve of the 5
th

 experimental cycle 

was always chosen, the previous cycles serving as preconditioning. The difference between 

experiments and simulations was then minimized for all 5 tests at once using a Particle 
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Swarm Optimisation (PSO) (Clerc and Kennedy 2002). Eventually, the following problem 

was solved with parameters and variables bounds based on the literature (Eberlein et al. 2004, 

Gasser et al. 2006, Moramarco et al. 2010, Deb and Padhye 2010): 

arg  min
𝑃

( ∑ ∑ {𝑢𝑖,𝑗
𝑠𝑖𝑚(𝑃) − 𝑢𝑖,𝑗

𝑒𝑥𝑝}
2

5 𝑚𝑎𝑟𝑘𝑒𝑟𝑠

𝑗

5 𝑡𝑒𝑠𝑡𝑠

𝑖

)     (5) 

With: 

P = [C10
NP, DNP, C10

AF, DAF, K1, K2, κ, α]  

C10
NP, C10

AF ∈  [0 ; 2] MPa; DNP, DAF  ∈  [0 ; 2] MPa−1; K1 ∈  [0 ; 1000] MPa;  

K2 ∈  [0 ; 2000]; κ ∈  [0; 1/3]; α ∈  [20; 60] °. 

Two sets of parameters (PI and PIV) were obtained for the healthy (Grade I) and 

degenerated IVDs (Grade IV). The optimisation’s accuracy was evaluated by computing 

Concordance Correlation Coefficient (CCC, Lin 1989) and Root Mean Square Error (RMSE) 

between in vitro and in silico markers’ deflection. 

1.2. Specimen-specific modelling of the vertebral body 

1.2.1. Scanning and testing of the vertebral bodies 

In a previous study (Chevalier et al. 2008), 12 vertebral bodies from male donors freed 

from soft tissues and posterior elements had been scanned at 82 μm voxel size in a water-

filled chamber (XtremeCT, 59.4 kV, 1000 mA, Scanco Medical AG, Zürich, Switzerland). 

After the scanning, the authors embedded the endplates of the vertebral bodies in 10-mm-

thick PMMA layers. Each specimen was pre-conditioned with 10 cycles of tension-

compression (200-400N) and compressed quasi-statically on a testing system (5560 Series 
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Table Model Systems, Instron, USA). The vertebral strength (FEXP) was defined as the 

maximal load achieved at failure. 

1.2.2. CT-based vertebral geometry 

These high-resolution CT images were processed after noise removal filtering (Laplace–

Hamming, Laib et al. 1998). The images were segmented between cortical and trabecular 

bone (masks), a volume was generated from the trabecular mask (Isosurf, Treece et al. 1999) 

and quadratic tetrahedral elements were fitted within the volume to mesh the trabecular bone. 

To represent the cortex, quadratic wedge elements were extruded from this trabecular mesh 

based on the thickness of the cortical mask (Fig. 4). The procedure was automatically 

performed using Medtool (www.dr-pahr.at) following Pahr and Zysset 2008. 

1.2.3. Bone constitutive model 

Bone volume fraction (BVTV) and trabecular fabric anisotropy, computed respectively 

from the local apparent BMD of the QCT image (Chevalier et al. 2008) and mean intercept 

length (Laib et al. 1998), were assigned automatically to each bony element via Medtool (Fig. 

4). An orthotropic elasticity tensor was assigned to each element based on the obtained fabric 

(Zysset and Curnier 1995) and an anisotropic elastic-viscoplastic damage model 

(Schwiedrzik and Zysset 2013) was chosen to simulate the mechanical behaviour of bone. 

The elastic domain is bound by an anisotropic quadric criterion (Schwiedrzik et al. 2013) 

fitted to uni- and multi-axial strength tests (Rincon and Zysset 2009). The model features no 

rate dependence in elastic regime and includes hardening and softening calibrated against 

experimental data (Dall’Ara et al. 2010). Damage (D), a scalar reducing the elements’ 

stiffness to mimic micro-cracks, was computed from accumulated plastic strain (stress-

http://www.dr-pahr.at/
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softening). D varies between 0 (no damage) and 1 (total failure). The constitutive model was 

implemented in Fortran (UMAT). Mesh and material mapping sensitivity are available in 

Pahr and Zysset 2009. 

1.3. Simulated scenarios 

1.3.1. Boundary conditions and load cases 

To simulate IVDs and endplate embedding, 2 discs were extruded from the endplates of 

the vertebrae meshes (Maquer et al. 2014a). The height of extrusion (HI and HIV) was 

calculated based on the size ratio of the discs being modelled (RI or RIV) and cross-sectional 

area of the extruded volume (CSAext):  

𝐻𝐼/𝐼𝑉 = 𝑅𝐼/𝐼𝑉√𝐶𝑆𝐴𝑒𝑥𝑡  (6) 

Again, a 42% volume ratio between NP and AF and quadratic tetrahedral elements were 

chosen for the meshing. The disc constitutive law was applied with the identified parameters 

to mimic healthy (PIRI) or degenerated (PIVRIV) IVDs. Embedding was simulated using linear 

elastic properties (E = 3000 MPa, ν = 0.3, Lewis 1997) and a fictitious healthy IVD with a 

degenerated thickness (PIRIV) was introduced.  

Loading scenarios in clinical environment must be simple to be well-controlled. Uniaxial 

compression and combined flexion-compression (lifting) were conducted beyond yield on the 

vertebral bodies with each endplate condition (48 simulations). Under compression, an axial 

displacement was prescribed to the cranial surface of the superior disc: 1 mm for the 

embedding, 6 mm for the IVDs. To simulate lifting, angular and axial displacement were 

conducted proportionally so that both flexion and compression reached their yield point 
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simultaneously (Graeff et al. 2009). In that case, 0.06 rad for the embedding and 0.36 rad for 

the IVDs were applied around the posterior edge of the superior disc (Crawford and Keaveny 

2004, Chevalier et al. 2008). 

1.3.2. Failure load and damage evaluation 

Axial reaction forces (N) and displacements (mm) were computed for each increment. 

The maximal load achieved during the simulation, failure load (F) (Fig. 4), was defined for 

each endplate condition: FPMMA, FPIRI
, FPIVRIV

and FPIRIV
. They were compared to FEXP, the 

experimental vertebral strength (Chevalier et al. 2008). Weighted mean damage (WMD) 

(Maquer et al. 2014a) was evaluated for 8 regions of interest (ROI) to estimate the damage 

accumulation at failure (Fig. 5):  

WMD𝑅𝑂𝐼 =  
∑(𝑉𝑖 ∗  Di)

𝑉𝑅𝑂𝐼
     (7) 

𝑉𝑅𝑂𝐼 is the volume of the ROI, Di and 𝑉𝑖 are the damage level and volume of the i
th

 

element of the ROI. Correlation coefficient (R
2
) was computed for failure loads and paired 

two-tailed student’s t-tests were performed for comparison with a significance level of 95%. 

2. Results 

2.1. Identification of the disc parameters 

Table 1 displays the relevant information of the healthy (I) and degenerated (IV) 

specimens and the calibrated parameters. The degenerative status of the 14 IVDs is available 

in Maquer et al. 2014b. Height and CSA, evaluated from the MRI data, fitted the accepted 

range (Koeller et al. 1986, O’Connell et al. 2007). A larger size ratio was computed for the 
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healthy specimen (RI = 0.25, RIV = 0.16).  

All MRI-based meshes presented good quality and similar deflections for all tests (< 5% 

difference in compression, flexion, extension, torsion and bending). As only a modest error 

(< 2%) was found between segmented and meshed volumes, the coarsest mesh density was 

chosen (IVD I: 1905 and IVD IV: 2843 elements) based on its CPU time (20 times shorter).  

Each iteration of the parameter identification involved 5 simulations lasting few minutes each 

on 4 processors of a 3GHz PC with 24 GB RAM (1 GB used). Good fit quality was achieved 

against the experiments within 68 (I) and 92 (IV) iterations. RMSE in torsion was lower than 

0.3°, did not exceed 0.5° in bending and 0.5 mm in compression. Correlations between in 

silico and in vitro markers’ deflection were adequate for each individual test (CCC > 0.75) 

and high for all tests (CCC = 0.99).  

Elastic modulus (E) and Poisson ratio (ν) were via Eq. 3. The healthy NP and AF matrix were 

both more compliant (EI
NP

 = 0.15 MPa / EIV
NP

 = 0.98 MPa, EI
AF

 = 1.16 MPa / EIV
AF

 = 3.04 

MPa), but respectively less and more compressible than the degenerated ones (νI
NP

 = 0.48 / 

νIV
NP

 = 0.42, νI
AF

 = 0.34 / νIV
AF

 = 0.38). The AF matrix was consistently stiffer, but more 

compressible than the NP’s regardless the degeneration grade. Yet, healthy AF fibres were 

much stiffer (K1) with fibre recruitment coefficient (K2) twice larger. The fibrillar 

organisation also differed, with better aligned fibres (κI < κIV) around a larger angle (αI > αIV) 

in the healthy IVD.  

2.2. Evaluation of vertebral failure load 

Under pure compression, significantly higher vertebral failure loads were computed with 

PMMA embedding (FPMMA = 3566 ± 1358 N, p < 0.001) compared to the IVDs and small but 
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significant differences were found between healthy (FPIRI  = 2839 ± 1088 N) and degenerated 

IVD (FPIVRIV
= 2646 ± 973 N, p < 0.001). Reducing the height of the healthy IVD slightly but 

significantly increased the vertebral failure load (FPIRIV
= 2906 ± 1063 N, p < 0.001). The 

simulated failure loads were highly related to each other (R
2
 > 0.99) and to FEXP (R

2
 > 0.97) 

(Table 2). Failure loads under lifting were significantly lower than under compression (p < 

0.001). Furthermore, FPMMA  (3547 ± 1448 N), FPIRIV
 (2864 ± 1092 N), FPIRI

 (2689 ± 1075 

N) and FPIVRIV
 (2470 ± 981 N) under lifting were significantly different from one another (p 

< 0.001) but highly correlated with the simulated (FPMMA, R
2
 > 0.97) and experimental (FEXP, 

R
2
 > 0.96) vertebral strength (Table 2). Under both loading scenarios, embedding and 

degenerated IVD provided respectively the highest and lowest failure load; decreasing the 

height of a healthy disc slightly increased the failure load (FPMMA > FPIRIV
 > FPIRI

 > FPIVRIV
) 

(Fig. 6). Regression equations provided in Table 2 relate the failure loads with healthy and 

degenerated IVD under compression or lifting to the conventional embedded situation 

(FPMMA and FEXP).  

2.3. Evaluation of the vertebral damage at failure 

The vertebral body with embedded endplates did not achieve wedge failure, in contrast 

with a load induced via IVDs (Fig. 7). Conducting lifting with the IVDs led to significantly 

higher damage in the anterior regions of the cortical and trabecular bone than pure 

compression (Fig. 8). The damage level in all ROIs was systematically the lowest with 

embedded endplates (PMMA), regardless the loading and generally the highest with the 

degenerated IVDs (PIVRIV). The healthy IVDs (PIRI and PIRIV) usually provided intermediate 

values significantly different than PIVRIV and PMMA with minor effect due to a height 
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reduction. The general tendency was WMDPMMA < WMDPIRIV
 < WMDPIRI

 < WMDPIVRIV
.  

3. Discussion 

This work showed that adding flexion to compression (lifting) and higher disc 

degeneration reduces the failure load (8-14%, 5-7%) and increases damage in the vertebral 

body. Under both loading scenarios, decreasing the disc height slightly increases the failure 

load and embedding and degenerated IVD provides respectively the highest and lowest 

failure load. Embedding does not resemble a degenerated disc although failure loads induced 

via IVDs correlate highly with vertebral strength. Usual simplifications inherent to IVD 

modelling were limited thanks to MRI-based dimensions and calibration of the material 

properties against multiple experiments. Unlike µFE limited to small strains (Fields et al. 

2010, Nekkanty et al. 2010, Yang et al. 2012), post-yield and damage behaviour of bone were 

examined via the latest image-based model (Schwiedrzik and Zysset 2013, Schwiedrzik et al. 

2013). 

Like the degenerative status, the IVD morphology can be accessed via MRI (Maquer et al. 

2014b, Maquer et al. 2014c). This method yielded a thinner and larger degenerated IVD 

(Koeller et al. 1986, Wilke et al. 2006, Peloquin et al. 2014). Such data was accounted in the 

size ratio when extruding the discs from the vertebral body models.  

IVD models are increasingly complex and often lack proper validation, which limits their 

clinical potential. A hyperelastic constitutive law (Gasser et al. 2006) was therefore chosen, 

without consideration for tissue heterogeneity other than anisotropy of the AF fibres and 

distinction nucleus/annulus or poroelasticity as the instantaneous response of the IVD is well 

replicated by such models (Jones and Wilcox 2008). Typically, the compressive loads are 



 

16 

 

essentially carried by the NP and AF matrix (Adams and Roughley 2006), while AF fibres 

withstand the bending and torsional loads (Haughton et al. 2000). Yet, radial expansion of the 

nucleus under compression (Poisson effect) generating hoop stresses in the annular fibres 

(Cortes and Elliott 2012). Hence, the calibration procedure was performed for 5 tests at once 

without other constraints than the parameter bounds. Still, this simple model was able to 

mimic the experimental response of the IVD (Fig.A1.). The calibrated parameters for NP and 

AF matrices were consistent with the increased compressibility and stiffness associated with 

the dehydration of the degenerated disc (Iatridis et al. 1997, Galbusera et al. 2014). The non-

linear behaviour and organisation of the AF fibres was afflicted by degeneration (Inoue et al. 

2011). The calibration occurring at the structural level, annular defects may have been 

homogenized, explaining the lower stiffness of the degenerated fibres (Adams and Roughley 

2006). The smaller fibre angle for the degenerated IVD is coherent with its height loss. 

Finally, the degenerated fibres were widely distributed compared to the healthy situation, 

implying that a degenerated bundle requires extra tension for all its fibres to be aligned and 

active, affecting the fibres’ reorientation (Guerin et al. 2006). The change of fibre angle along 

the circumference of the AF (Holzapfel et al. 2005) has been considered in early stages of 

this study, but did not improve the fit to the experiments.  

Disc degeneration predisposes to failure of the anterior vertebral body (Adams et al. 2006). 

Yet, independently of processes involving the neural arch, this study confirmed that some 

degrees of flexion added to the compression put the osteoporotic vertebral body at higher risk 

of failure. The anterior damage was significantly higher and the deformations of the vertebral 

bodies loaded via IVDs indubitably reminded of wedge fractures. This disagrees with Yang et 

al. (2012) who found that the spatial distribution of stress within the vertebral body is not 
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significantly affected by a moderate flexion (5°). The failure load with IVDs was reached for 

~ 6° of flexion, which concurs with in vitro wedge failure angles (4-6°, Adams et al. 2006, Lu 

et al. 2014). The IVD status also has immediate consequences on vertebral failure load and 

on damage accumulation but none is directly related to a height loss and must arise from the 

altered material properties. The highest damage level was observed in the sub-chondral 

trabecular bone. The bone being weaker under tensile and shear strains (Feng et al. 2000), 

large radial expansion of the nucleus under compression induces tension in the upper 

endplates, placing them at high risk of failure (Fields et al. 2010). Even if the lower 

pressurization in a degenerated disc should reduce the effect, its weaker and disorganised AF 

fibres are probably less able to constrain the radial expansion.  

Experimental estimation of vertebral strength usually consists in the compression of vertebral 

bodies, whose endplates were embedded in stiff material. This technique prevents endplate 

deformations and transfers a portion of the load from the trabecular to the cortical bone 

(Eswaran et al. 2006) leading to a more brittle behaviour with concentrated damage and  

higher failure load reached after small deformations, which differs from the clinical situation 

(Fig.A.2) (Nekkanty et al. 2010, Maquer et al. 2014a). Yet, independently of the degenerative 

status of the IVDs, failure loads under compression or lifting are highly correlated with 

experimental and simulated vertebral strength (R
2
 > 0.97). Accordingly, extensive modelling 

of the IVD could be avoided using regression equations determined against the conventional 

embedded situation. Failure occurs when a large region of the bone collapses. This region, 

essentially composed of the weakest trabecular elements (Stauber et al. 2014), is 

characteristic of each vertebral body, which explains the high correlations between failure 

loads achieved with different loading conditions (Maquer et al. 2014a). 
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Strengths of vertebral body models with embedded endplates were compared to failure loads 

of vertebral bodies loaded via two real IVDs (Lu et al. 2014). Moderate correlation was found 

(R
2
 = 0.68), suggesting that loading via IVDs is not necessary to evaluate vertebral strength. 

Here, the opposite method was proposed: FE predictions with IVDs were compared to 

experimental vertebral strengths and higher correlation was achieved (R
2
 > 0.96). The 

discrepancy can be explained by distinct experimental set-ups and distinct levels of disc 

degeneration. While embedding of isolated vertebrae ensures well-defined loading conditions 

(Buckley et al. 2007), the test of the spinal segments is not as controlled. Moreover, the 

degeneration grading of the IVDs does not necessarily reflects its mechanical properties 

(Maquer et al. 2014b). 

Limitations can be mentioned. The specimens had been frozen and thawed before MRI and 

tests, but few freezing-unfreezing cycles do not affect the flexibility of spinal segments 

(Gleizes et al. 1998, Tan and Uppuganti 2012). The discs and vertebrae were from male 

donors to limit the effect of the gender, but the dissimilar disc heights and cross-sectional 

areas can also be induced by different body weights rather than degeneration (Nachemson et 

al. 1979). Statistical shape models may be useful to account for the inter-individual 

variability (Neubert et al. 2013, Peloquin et al. 2014). Modelling assumptions may explain 

the poorer fit of the compressive behaviour of the degenerated IVD. The healthy NP can be 

segmented (Swider et al. 2010, Reutlinger et al. 2014), but no sharp interface exists between 

degenerated NP and AF (Peng et al. 2006, Ellingson et al. 2013). Unable to segment the 

degenerated nucleus, the same dimensions were applied to both NPs (Goto et al. 2002, 

Moramarco et al. 2010 and Wang et al. 2013). Moreover, the fibres are distributed based on 

the AF’s contour, which may be fine with a healthy disc, but degenerated bundles are often 
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disrupted due to the loss of NP pressurization (Adams and Roughley 2006) impacting their 

resistance to the radial expansion of the NP under compression (Michalek et al. 2010). To 

minimize the impact of those simplifications, NP and AF parameters were fitted 

independently and fibre dispersion κ was included in the model. Only two specific IVDs were 

used, but represented two extreme cases of degeneration. Finally, experimental strength 

(FEXP, Chevalier et al. 2008) were consistently higher than the simulated values (FPMMA) due 

to the non-viscous nature of the bone constitutive model. Fitting the viscosity term would 

provide a one-to-one correlation affecting equally all FE predictions.  

In summary, osteoporotic vertebral bodies bonded to degenerated intervertebral discs can be 

up to 14% weaker, especially under lifting, but failure loads with IVDs correlate highly with 

vertebral strengths. Therefore, if damage propagation and failure mechanism are not required, 

the clinical assessment of failure load can be extrapolated from finite element simulations 

without extensive modelling of the discs, using regression equations determined against the 

conventional embedded situation. Furthermore, vertebral sections, providing equivalent 

strength predictions, can also be used to simplify the pre-processing and computing time 

(Maquer et al. 2012). This is clinically relevant, since FE prediction of bone strength can be 

used as an additional criterion to identify the individuals at risk (Kopperdahl et al. 2014).  
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Figures 

 

Fig.1. MRI-based FE meshes were generated from T1 weighted images of the healthy (grade I) and degenerated 

(grade IV) specimens. Both discs were segmented. Size ratio (R) was computed for each specimen from height 

(H) and cross-sectional area (CSA) established from the segmented volume. Central nucleus (yellow) and the 

surrounding annulus (red) were partitioned and the volumes meshed. The meshing pipeline was adapted from 

Ribeiro et al. 2009. 
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Fig.2. The model features 8 parameters: matrix constants for annulus fibrosus (C10
AF, DAF) and nucleus pulposus 

(C10
NP, DNP), fibre stiffness (K1), rate of stiffness increase (K2), average bundle angle (α1 = −α2 = α) and fibre 

dispersion (κ) around the initial bundle direction. 
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Fig.3. Material parameters for healthy (PI) and degenerated (PIV) discs were identified against tests. 

Compression (C), axial torsion (AR), lateral bending (LB), flexion (F) and extension (E) were applied to the 

IVDs and simulated on their respective MRI-based FE model. Optimisation of PI and PIV was performed by 

minimizing differences between experimental (O) and simulated (Δ) markers’ deflections u taken at regular load 

increments.  
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Fig.4. Compression and lifting were applied to 12 vertebral bodies’ models. Meshing, bone volume fraction 

(BVTV) and trabecular anisotropy necessary to compute elastic, plastic and damage behaviour of the bone were 

determined form the high resolution peripheral QCT data. PMMA embedding, degenerated (PIVRIV) and healthy 

IVDs with healthy thickness (PIRI) or degenerated thickness (PIRIV) were extruded accordingly (HI or HIV, Eq.6). 

Finally, load and damage at failure were computed for each boundary condition and loading. 
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Fig.5. Regions of interest of the vertebral body. Each vertebral body (a.) was divided into 8 regions (b.): 

anterior and posterior cortical shell (AC / PC), anterior, central and posterior endplates (AE / CE / PE) and 

trabecular bone (AT / CT / PT). Both endplates are accounted for in AE, CE and PE. AT and PT refer to the 

trabecular bone elements in contact with the cortical shell (AC and PC). CT represents the trabecular core. 

 

  



 

38 

 

 

Fig.6. The mean values and standard deviations of the vertebral bodies’ failure loads are displayed. All failure 

loads were significantly different (p < 0.05). 
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Fig.7. Comparison of the damage patterns within the mid-sagittal section of a typical vertebral body at failure 

under compression (left) and lifting (right), 0 being the absence of damage and 1 being the complete failure of 

the element.  
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Fig.8. Evaluation of the damage accumulation within the 8 ROIs of the vertebral bodies under compression (a, 

b) and lifting (c, d). Damage was computed at failure. The WMDs of the cortical components (endplates: AE, 

CE, PE, cortex: AC, PC) are displayed in (a) and (c). The WMDs of the trabecular bone (AT, CT, PT) are 

shown in (b) and (d). All WMDs of a ROI were significantly different (p < 0.05) unless stated otherwise. 
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Fig.A1. Experimental and simulated load-deflection curves in compression (C), axial torsion (AR), lateral 

bending (LB), flexion (F) and extension (E) for both healthy (I) and degenerated (IV) specimens. 
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Fig.A2. Force-deflection curves and failure loads computed for the 4 boundary conditions for a typical 

vertebral body reported for uniaxial compression (a) and lifting (b). For comparison purpose, the maximal 

force applied on a L1 vertebral body of a 64 years-old man of 60kg while (A) walking slowly (3km/h) and (B) 

bending to lift 10kg from the floor (Bergmann 2008). 
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Tables 

Table 1. The degeneration scores, height (H), cross-sectional area (CSA) and size ratio (R) were assessed from 

MRI. Two sets of parameters were identified from the calibration. The calibration quality was assessed via Root 

Mean Square Error (RMSE) and Concordance Correlation Coefficient (CCC) between simulated and measured 

load-deflection data (cf. Fig.A1). Experimental ranges of motion (ROM) are also provided.  

Specimen I IV

Thompson 1 4

Watanabe 1 4

Benneker 0 15

H (mm) 9.5 7.8

CSA (mm
2
) 1430 2367

R 0.25 0.16

C10
NP

 (MPa) 0.026 0.173

D
NP 

(MPa
-1

) 1.31 0.97

C10
AF

  (MPa) 0.217 0.551

D
AF

 (MPa
-1

) 1.600 0.481

K1 (MPa) 934 42

K2 1160 596

α (°) 35.9 31.7

κ 0.182 0.270

AR (°) 1.2 2.7

LB (°) 4.2 3.0

F (°) -5.3 -4.0

E (°) 4.7 4.8

C (mm) -1.3 -2.0

AR (°) 0.23 0.20

LB (°) 0.53 0.40

F (°) 0.24 0.44

E (°) 0.29 0.47

C (mm) 0.21 0.44

AR 0.80 0.96

LB 0.85 0.86

F 0.98 0.83

E 0.97 0.92

C 0.82 0.75

All 5 tests 0.99 0.99

Degeneration 

Morphology 

Parameters     

RMSE          

CCC             

Exp. ROM

I IV
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Table 2. All the failure loads were compared to the compressive strength of the vertebral body with embedded 

endplates simulated in this study (FPMMA) and measured in vitro in Chevalier et al. 2008 (FEXP). R
2
, standard 

error of the estimate (SEE) and regression equations are provided. All the correlations were highly significant 

(p < 0.001).  

R
2

SEE Equation R
2

SEE Equation

0.971 0.044 Y=0.673X-31.086

FPIRI 0.996 0.020 Y=0.800X-12.969 0.978 0.030 Y=0.541X-54.508

FPIRIV 0.996 0.019 Y=0.782X+118.408 0.979 0.029 Y=0.529X+77.020

FPIVRIV 0.996 0.016 Y=0.715X+94.632 0.983 0.024 Y=0.485X+51.700

0.993 0.03 Y=0.959X-156.507 0.964 0.047 Y=0.645X-185.023

FPIRI 0.972 0.044 Y=0.688X+9.859 0.963 0.035 Y=0.468X-36.076

FPIRIV 0.974 0.045 Y=0.726X+64.358 0.971 0.033 Y=0.495X+8.289

FPIVRIV 0.986 0.030 Y=0.659X+-60.737 0.975 0.027 Y=0.448X-102.850

Chevalier et al.

FEXP 

Y

X

Compression

FPMMA

This study

Compression

Lifting

FPMMA

FPMMA

 

 

 


