Extending outbreak investigation with machine learning and graph theory: Benefits of new tools with application to a nosocomial outbreak of a multidrug-resistant organism.
Options
BORIS DOI
Publisher DOI
PubMed ID
36111457
Description
OBJECTIVE
From January 1, 2018, until July 31, 2020, our hospital network experienced an outbreak of vancomycin-resistant enterococci (VRE). The goal of our study was to improve existing processes by applying machine-learning and graph-theoretical methods to a nosocomial outbreak investigation.
METHODS
We assembled medical records generated during the first 2 years of the outbreak period (January 2018 through December 2019). We identified risk factors for VRE colonization using standard statistical methods, and we extended these with a decision-tree machine-learning approach. We then elicited possible transmission pathways by detecting commonalities between VRE cases using a graph theoretical network analysis approach.
RESULTS
We compared 560 VRE patients to 86,684 controls. Logistic models revealed predictors of VRE colonization as age (aOR, 1.4 (per 10 years), with 95% confidence interval [CI], 1.3-1.5; P < .001), ICU admission during stay (aOR, 1.5; 95% CI, 1.2-1.9; P < .001), Charlson comorbidity score (aOR, 1.1; 95% CI, 1.1-1.2; P < .001), the number of different prescribed antibiotics (aOR, 1.6; 95% CI, 1.5-1.7; P < .001), and the number of rooms the patient stayed in during their hospitalization(s) (aOR, 1.1; 95% CI, 1.1-1.2; P < .001). The decision-tree machine-learning method confirmed these findings. Graph network analysis established 3 main pathways by which the VRE cases were connected: healthcare personnel, medical devices, and patient rooms.
CONCLUSIONS
We identified risk factors for being a VRE carrier, along with 3 important links with VRE (healthcare personnel, medical devices, patient rooms). Data science is likely to provide a better understanding of outbreaks, but interpretations require data maturity, and potential confounding factors must be considered.
From January 1, 2018, until July 31, 2020, our hospital network experienced an outbreak of vancomycin-resistant enterococci (VRE). The goal of our study was to improve existing processes by applying machine-learning and graph-theoretical methods to a nosocomial outbreak investigation.
METHODS
We assembled medical records generated during the first 2 years of the outbreak period (January 2018 through December 2019). We identified risk factors for VRE colonization using standard statistical methods, and we extended these with a decision-tree machine-learning approach. We then elicited possible transmission pathways by detecting commonalities between VRE cases using a graph theoretical network analysis approach.
RESULTS
We compared 560 VRE patients to 86,684 controls. Logistic models revealed predictors of VRE colonization as age (aOR, 1.4 (per 10 years), with 95% confidence interval [CI], 1.3-1.5; P < .001), ICU admission during stay (aOR, 1.5; 95% CI, 1.2-1.9; P < .001), Charlson comorbidity score (aOR, 1.1; 95% CI, 1.1-1.2; P < .001), the number of different prescribed antibiotics (aOR, 1.6; 95% CI, 1.5-1.7; P < .001), and the number of rooms the patient stayed in during their hospitalization(s) (aOR, 1.1; 95% CI, 1.1-1.2; P < .001). The decision-tree machine-learning method confirmed these findings. Graph network analysis established 3 main pathways by which the VRE cases were connected: healthcare personnel, medical devices, and patient rooms.
CONCLUSIONS
We identified risk factors for being a VRE carrier, along with 3 important links with VRE (healthcare personnel, medical devices, patient rooms). Data science is likely to provide a better understanding of outbreaks, but interpretations require data maturity, and potential confounding factors must be considered.
Date of Publication
2023-02
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
Language(s)
en
Contributor(s)
Additional Credits
Universitätsklinik für Infektiologie
Institut für Physiologie
Ärztliche Direktion Inselspital
Universitätsinstitut für Klinische Chemie (UKC)
Series
Infection control and hospital epidemiology
Publisher
Cambridge University Press
ISSN
0899-823X
Access(Rights)
open.access