• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • Statistics
  • More
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Segmentation of Peripheral Nerves From Magnetic Resonance Neurography: A Fully-Automatic, Deep Learning-Based Approach.
 

Segmentation of Peripheral Nerves From Magnetic Resonance Neurography: A Fully-Automatic, Deep Learning-Based Approach.

Options
  • Details
  • Files
BORIS DOI
10.7892/boris.120352
Publisher DOI
10.3389/fneur.2018.00777
PubMed ID
30283397
Description
Diagnosis of peripheral neuropathies relies on neurological examinations, electrodiagnostic studies, and since recently magnetic resonance neurography (MRN). The aim of this study was to develop and evaluate a fully-automatic segmentation method of peripheral nerves of the thigh. T2-weighted sequences without fat suppression acquired on a 3 T MR scanner were retrospectively analyzed in 10 healthy volunteers and 42 patients suffering from clinically and electrophysiologically diagnosed sciatic neuropathy. A fully-convolutional neural network was developed to segment the MRN images into peripheral nerve and background tissues. The performance of the method was compared to manual inter-rater segmentation variability. The proposed method yielded Dice coefficients of 0.859 ± 0.061 and 0.719 ± 0.128, Hausdorff distances of 13.9 ± 26.6 and 12.4 ± 12.1 mm, and volumetric similarities of 0.930 ± 0.054 and 0.897 ± 0.109, for the healthy volunteer and patient cohorts, respectively. The complete segmentation process requires less than one second, which is a significant decrease to manual segmentation with an average duration of 19 ± 8 min. Considering cross-sectional area or signal intensity of the segmented nerves, focal and extended lesions might be detected. Such analyses could be used as biomarker for lesion burden, or serve as volume of interest for further quantitative MRN techniques. We demonstrated that fully-automatic segmentation of healthy and neuropathic sciatic nerves can be performed from standard MRN images with good accuracy and in a clinically feasible time.
Date of Publication
2018
Publication Type
article
Subject(s)
600 - Technology::610 - Medicine & health
500 - Science::570 - Life sciences; biology
Keyword(s)
health machine learning magnetic resonance imaging magnetic resonance neurography peripheral nervous system diseases sciatic nerve segmentation
Language(s)
en
Contributor(s)
Balsiger, Fabianorcid-logo
Institut für chirurgische Technologien und Biomechanik (ISTB)
Steindel, Carolin
Arn, Mirjam
Wagner, Benedikt
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Grunder, Lorenz Nicolas
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
El-Koussy, Marwan
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Valenzuela, Waldo Enriqueorcid-logo
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Reyes Aguirre, Mauricio Antonio
Institut für chirurgische Technologien und Biomechanik (ISTB)
Scheidegger, Olivierorcid-logo
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Universitätsklinik für Neurologie
Additional Credits
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Institut für chirurgische Technologien und Biomechanik (ISTB)
Series
Frontiers in neurology
Publisher
Frontiers Media S.A.
ISSN
1664-2295
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: 4f1f0f [ 1.12. 12:07]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo