• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Volumetric Food Quantification Using Computer Vision on a Depth-Sensing Smartphone: Preclinical Study.
 

Volumetric Food Quantification Using Computer Vision on a Depth-Sensing Smartphone: Preclinical Study.

Options
  • Details
  • Files
BORIS DOI
10.7892/boris.147780
Publisher DOI
10.2196/15294
PubMed ID
32209531
Description
BACKGROUND

Quantification of dietary intake is key to the prevention and management of numerous metabolic disorders. Conventional approaches are challenging, laborious, and lack accuracy. The recent advent of depth-sensing smartphones in conjunction with computer vision could facilitate reliable quantification of food intake.

OBJECTIVE

The objective of this study was to evaluate the accuracy of a novel smartphone app combining depth-sensing hardware with computer vision to quantify meal macronutrient content using volumetry.

METHODS

The app ran on a smartphone with a built-in depth sensor applying structured light (iPhone X). The app estimated weight, macronutrient (carbohydrate, protein, fat), and energy content of 48 randomly chosen meals (breakfasts, cooked meals, snacks) encompassing 128 food items. The reference weight was generated by weighing individual food items using a precision scale. The study endpoints were (1) error of estimated meal weight, (2) error of estimated meal macronutrient content and energy content, (3) segmentation performance, and (4) processing time.

RESULTS

In both absolute and relative terms, the mean (SD) absolute errors of the app's estimates were 35.1 g (42.8 g; relative absolute error: 14.0% [12.2%]) for weight; 5.5 g (5.1 g; relative absolute error: 14.8% [10.9%]) for carbohydrate content; 1.3 g (1.7 g; relative absolute error: 12.3% [12.8%]) for fat content; 2.4 g (5.6 g; relative absolute error: 13.0% [13.8%]) for protein content; and 41.2 kcal (42.5 kcal; relative absolute error: 12.7% [10.8%]) for energy content. Although estimation accuracy was not affected by the viewing angle, the type of meal mattered, with slightly worse performance for cooked meals than for breakfasts and snacks. Segmentation adjustment was required for 7 of the 128 items. Mean (SD) processing time across all meals was 22.9 seconds (8.6 seconds).

CONCLUSIONS

This study evaluated the accuracy of a novel smartphone app with an integrated depth-sensing camera and found highly accurate volume estimation across a broad range of food items. In addition, the system demonstrated high segmentation performance and low processing time, highlighting its usability.
Date of Publication
2020-03-25
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
Keyword(s)
computer vision depth camera dietary assessment smartphone
Language(s)
en
Contributor(s)
Herzig, David
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Nakas, Christos T.
Universitätsinstitut für Klinische Chemie (UKC)
Stalder, Janine
Kosinski, Christophe
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Laesser, Céline Isabelle
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Dehais, Joachim Blaise
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Jäggi, Raphael Andreas
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Keller, Barbaraorcid-logo
Universitätsinstitut für Klinische Chemie (UKC)
Dahlweid, Fried-Michael
Stettler, Christoph
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Bally, Lia Claudia
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Additional Credits
Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
Universitätsinstitut für Klinische Chemie (UKC)
Series
JMIR mHealth and uHealth
Publisher
JMIR Publications
ISSN
2291-5222
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: ae9592 [15.12. 16:43]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
  • Audiovisual Material
  • Software & other digital items
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo