• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks.
 

Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks.

Options
  • Details
  • Files
BORIS DOI
10.48350/151640
Publisher DOI
10.1038/s41598-020-79925-4
PubMed ID
33441684
Description
Segmentation of white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. In this paper we explore segmentation solutions based on convolutional neural networks (CNNs) for providing fast, reliable segmentations of lesions and grey-matter structures in multi-modal MR imaging, and the performance of these methods when applied to out-of-centre data. We trained two state-of-the-art fully convolutional CNN architectures on the 2016 MSSEG training dataset, which was annotated by seven independent human raters: a reference implementation of a 3D Unet, and a more recently proposed 3D-to-2D architecture (DeepSCAN). We then retrained those methods on a larger dataset from a single centre, with and without labels for other brain structures. We quantified changes in performance owing to dataset shift, and changes in performance by adding the additional brain-structure labels. We also compared performance with freely available reference methods. Both fully-convolutional CNN methods substantially outperform other approaches in the literature when trained and evaluated in cross-validation on the MSSEG dataset, showing agreement with human raters in the range of human inter-rater variability. Both architectures showed drops in performance when trained on single-centre data and tested on the MSSEG dataset. When trained with the addition of weak anatomical labels derived from Freesurfer, the performance of the 3D Unet degraded, while the performance of the DeepSCAN net improved. Overall, the DeepSCAN network predicting both lesion and anatomical labels was the best-performing network examined.
Date of Publication
2021-01-13
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
Language(s)
en
Contributor(s)
McKinley, Richard Iain
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Wepfer, Rik
Aschwanden, Fabian
Grunder, Lorenz Nicolas
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Muri, Raphaelaorcid-logo
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Rummel, Christian
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Verma, Rajeev
Weisstanner, Christian
Reyes Aguirre, Mauricio Antonio
ARTORG Center - Artificial Intelligence in Medical Image Computing
Salmen, Anke
Universitätsklinik für Neurologie
Chan, Andrew Hao-Kuang
Universitätsklinik für Neurologie
Wagner, Franca
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Wiest, Roland Gerhard Rudi
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
Additional Credits
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
ARTORG Center - Artificial Intelligence in Medical Image Computing
Universitätsklinik für Neurologie
Series
Scientific reports
Publisher
Springer Nature
ISSN
2045-2322
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: ae9592 [15.12. 16:43]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
  • Audiovisual Material
  • Software & other digital items
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo