• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • Statistics
  • More
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Enduring differential patterns of neuronal loss and myelination along 6-month pulsatile gonadotropin-releasing hormone therapy in individuals with Down syndrome.
 

Enduring differential patterns of neuronal loss and myelination along 6-month pulsatile gonadotropin-releasing hormone therapy in individuals with Down syndrome.

Options
  • Details
  • Files
BORIS DOI
10.48620/87515
Publisher DOI
10.1093/braincomms/fcaf117
PubMed ID
40190351
Description
Despite major progress in understanding the impact of the triplicated chromosome 21 on the brain and behaviour in Down syndrome, our knowledge of the underlying neurobiology in humans is still limited. We sought to address some of the pertinent questions about the drivers of brain structure differences and their associations with cognitive function in Down syndrome. To this aim, in a pilot magnetic resonance imaging (MRI) study, we monitored brain anatomy in individuals with Down syndrome receiving pulsatile gonadotropin-releasing hormone (GnRH) therapy over 6 months in comparison with typically developed age- and sex-matched healthy controls. We analysed cross-sectional (Down syndrome/healthy controls n  = 11/27; Down syndrome-2 females/9 males, age 26.7 ± 5.0 years old; healthy controls-8 females/19 males, age 24.1 ± 2.5 years old) and longitudinal (Down syndrome/healthy controls n  = 8/13; Down syndrome-1 female/7 males, age 26.4 ± 5.3 years old; healthy controls-4 females/9 males, 24.7 ± 2.2 years old) relaxometry and diffusion-weighted MRI data alongside standard cognitive assessment. The statistical tests looked for cross-sectional baseline differences and for differential changes over time between Down syndrome and healthy controls. The post hoc analysis confined to the Down syndrome group, tested for potential time-dependent interactions between individuals' overall cognitive performance and associated brain anatomy changes. The brain MRI statistical analyses covered both grey and white matter regions across the whole brain allowing for investigation of regional volume, macromolecular/myelin and iron content, additionally to diffusion tensor and neurite orientation and dispersion density characterization across major white matter tracts. The cross-sectional analysis showed reduced frontal, temporal and cerebellar volumes in Down syndrome with only the cerebellar differences remaining significant after adjustment for the presence of microcephaly (P family-wise-corrected < 0.05). The volume reductions were paralleled by decreased cortical and subcortical macromolecular/myelin content confined to the cortical motor system, thalamus and basal ganglia (P family-wise-corrected < 0.05). All major white matter tracts showed a ubiquitous mean diffusivity and intracellular volume fraction reduction contrasted with no differences in magnetization transfer saturation metrics (P family-wise-corrected < 0.05). Compared with healthy controls over the same period, Down syndrome individuals under GnRH therapy showed cognitive improvement (Montreal Cognitive Assessment from 11.4 ± 5.5 to 15.1 ± 5.6; P < 0.01) on the background of stability of the observed differential neuroanatomical patterns. Despite the lack of adequate Down syndrome control group, we interpret the obtained cross-sectional and longitudinal findings in young adults as evidence for predominant neurodevelopmental neuronal loss due to dysfunctional neurogenesis without signs for short-term myelin loss.
Date of Publication
2025
Publication Type
article
Subject(s)
600 - Technology::610 - Medicine & health
Keyword(s)
brain tissue properties
•
magnetic resonance imaging
•
morphometry
•
multi-parameter mapping
•
trisomy 21
Language(s)
en
Contributor(s)
Adamo, Michela
Gayer, Mihaly
Jacobs, An
Raynaud, Quentin
Sebbah, Raphael
di Domenicantonio, Giulia
Latypova, Adeliya
Vionnet, Nathalie
Kherif, Ferath
Lutti, Antoine
Pitteloud, Nelly
Draganski, Bogdan
Universitätsklinik für Neurologie - Neurodegeneration
Additional Credits
Clinic of Neurology
Institute of Diagnostic and Interventional Neuroradiology
Universitätsklinik für Neurologie - Neurodegeneration
Series
Brain Communications
Publisher
Oxford University Press
ISSN
2632-1297
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: 4f1f0f [ 1.12. 12:07]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo