Feasibility of transesophageal phrenic nerve stimulation.
Options
BORIS DOI
Publisher DOI
PubMed ID
36717872
Description
BACKGROUND
Every year, more than 2.5 million critically ill patients in the ICU are dependent on mechanical ventilation. The positive pressure in the lungs generated by the ventilator keeps the diaphragm passive, which can lead to a loss of myofibers within a short time. To prevent ventilator-induced diaphragmatic dysfunction (VIDD), phrenic nerve stimulation may be used.
OBJECTIVE
The goal of this study is to show the feasibility of transesophageal phrenic nerve stimulation (TEPNS). We hypothesize that selective phrenic nerve stimulation can efficiently activate the diaphragm with reduced co-stimulations.
METHODS
An in vitro study in saline solution combined with anatomical findings was performed to investigate relevant stimulation parameters such as inter-electrode spacing, range to target site, or omnidirectional vs. sectioned electrodes. Subsequently, dedicated esophageal electrodes were inserted into a pig and single stimulation pulses were delivered simultaneously with mechanical ventilation. Various stimulation sites and response parameters such as transdiaphragmatic pressure or airway flow were analyzed to establish an appropriate stimulation setting.
RESULTS
Phrenic nerve stimulation with esophageal electrodes has been demonstrated. With a current amplitude of 40 mA, similar response figures of the diaphragm activation as compared to conventional stimulation with needle electrodes at 10mA were observed. Directed electrodes best aligned with the phrenic nerve resulted in up to 16.9 % higher amplitude at the target site in vitro and up to 6 cmH20 higher transdiaphragmatic pressure in vivo as compared to omnidirectional electrodes. The activation efficiency was more sensitive to the stimulation level inside the esophagus than to the inter-electrode spacing. Most effective and selective stimulation was achieved at the level of rib 1 using sectioned electrodes 40 mm apart.
CONCLUSION
Directed transesophageal phrenic nerve stimulation with single stimuli enabled diaphragm activation. In the future, this method might keep the diaphragm active during, and even support, artificial ventilation. Meanwhile, dedicated sectioned electrodes could be integrated into gastric feeding tubes.
Every year, more than 2.5 million critically ill patients in the ICU are dependent on mechanical ventilation. The positive pressure in the lungs generated by the ventilator keeps the diaphragm passive, which can lead to a loss of myofibers within a short time. To prevent ventilator-induced diaphragmatic dysfunction (VIDD), phrenic nerve stimulation may be used.
OBJECTIVE
The goal of this study is to show the feasibility of transesophageal phrenic nerve stimulation (TEPNS). We hypothesize that selective phrenic nerve stimulation can efficiently activate the diaphragm with reduced co-stimulations.
METHODS
An in vitro study in saline solution combined with anatomical findings was performed to investigate relevant stimulation parameters such as inter-electrode spacing, range to target site, or omnidirectional vs. sectioned electrodes. Subsequently, dedicated esophageal electrodes were inserted into a pig and single stimulation pulses were delivered simultaneously with mechanical ventilation. Various stimulation sites and response parameters such as transdiaphragmatic pressure or airway flow were analyzed to establish an appropriate stimulation setting.
RESULTS
Phrenic nerve stimulation with esophageal electrodes has been demonstrated. With a current amplitude of 40 mA, similar response figures of the diaphragm activation as compared to conventional stimulation with needle electrodes at 10mA were observed. Directed electrodes best aligned with the phrenic nerve resulted in up to 16.9 % higher amplitude at the target site in vitro and up to 6 cmH20 higher transdiaphragmatic pressure in vivo as compared to omnidirectional electrodes. The activation efficiency was more sensitive to the stimulation level inside the esophagus than to the inter-electrode spacing. Most effective and selective stimulation was achieved at the level of rib 1 using sectioned electrodes 40 mm apart.
CONCLUSION
Directed transesophageal phrenic nerve stimulation with single stimuli enabled diaphragm activation. In the future, this method might keep the diaphragm active during, and even support, artificial ventilation. Meanwhile, dedicated sectioned electrodes could be integrated into gastric feeding tubes.
Date of Publication
2023-01-30
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
Keyword(s)
Critical care Diaphragm activation Esophageal catheter Hospital mortality Intensive care unit Lung and diaphragm protective Phrenic nerve stimulation Transesophageal stimulation Ventilation induced diaphragmatic dysfunction
Language(s)
en
Contributor(s)
Kaufmann, Elisa M | |
Krause, Sven | |
Geisshuesler, Lukas | |
Niederhauser, Thomas |
Additional Credits
Universitätsklinik für Neurologie
Universitätsklinik für Kardiologie
Series
Biomedical engineering online
Publisher
BioMed Central
ISSN
1475-925X
Access(Rights)
open.access