Addressing bias in big data and AI for health care: A call for open science.
Options
BORIS DOI
Publisher DOI
PubMed ID
34693373
Description
Artificial intelligence (AI) has an astonishing potential in assisting clinical decision making and revolutionizing the field of health care. A major open challenge that AI will need to address before its integration in the clinical routine is that of algorithmic bias. Most AI algorithms need big datasets to learn from, but several groups of the human population have a long history of being absent or misrepresented in existing biomedical datasets. If the training data is misrepresentative of the population variability, AI is prone to reinforcing bias, which can lead to fatal outcomes, misdiagnoses, and lack of generalization. Here, we describe the challenges in rendering AI algorithms fairer, and we propose concrete steps for addressing bias using tools from the field of open science.
Date of Publication
2021-10-08
Publication Type
Article
Subject(s)
000 - Computer science, knowledge & systems
600 - Technology::610 - Medicine & health
500 - Science::510 - Mathematics
Keyword(s)
artificial intelligence bias data standards deep learning health care open science participatory science
Language(s)
en
Contributor(s)
Additional Credits
Institut für Informatik (INF)
Universitätsklinik für Neurologie
Series
Patterns
Publisher
Cell Press
ISSN
2666-3899
Access(Rights)
open.access