PatchSorter: a high throughput deep learning digital pathology tool for object labeling.
Options
BORIS DOI
Publisher DOI
PubMed ID
38902336
Description
The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital pathology images often requires intractable labeling of large quantities of histological objects. Here we release an open-source labeling tool, PatchSorter, which integrates deep learning with an intuitive web interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over unaided labeling, with minimal impact on labeling accuracy, thus enabling high-throughput labeling of large datasets.
Date of Publication
2024-06-20
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
600 - Technology::630 - Agriculture
Language(s)
en
Contributor(s)
Institut für Tierpathologie (ITPA) - Labor Krebstherapieresistenz | |
Talawalla, Tasneem | |
Toth, Robert | |
Ambekar, Akhil | |
Rea, Kien | |
Chamian, Oswin | |
Fan, Fan | |
Berezowska, Sabina | |
Institut für Tierpathologie (ITPA) - Labor Krebstherapieresistenz | |
Madabhushi, Anant | |
Maillard, Marie | |
Barisoni, Laura | |
Horlings, Hugo Mark | |
Janowczyk, Andrew |
Additional Credits
Institut für Tierpathologie (ITPA)
Series
NPJ digital medicine
Publisher
Nature Publishing Group
ISSN
2398-6352
Access(Rights)
open.access