• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. PatchSorter: a high throughput deep learning digital pathology tool for object labeling.
 

PatchSorter: a high throughput deep learning digital pathology tool for object labeling.

Options
  • Details
  • Files
BORIS DOI
10.48350/197981
Publisher DOI
10.1038/s41746-024-01150-4
PubMed ID
38902336
Description
The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital pathology images often requires intractable labeling of large quantities of histological objects. Here we release an open-source labeling tool, PatchSorter, which integrates deep learning with an intuitive web interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over unaided labeling, with minimal impact on labeling accuracy, thus enabling high-throughput labeling of large datasets.
Date of Publication
2024-06-20
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
600 - Technology::630 - Agriculture
Language(s)
en
Contributor(s)
Walker, Cédric André
Institut für Tierpathologie (ITPA)
Institut für Tierpathologie (ITPA) - Labor Krebstherapieresistenz
Talawalla, Tasneem
Toth, Robert
Ambekar, Akhil
Rea, Kien
Chamian, Oswin
Fan, Fan
Berezowska, Sabina
Rottenberg, Svenorcid-logo
Institut für Tierpathologie (ITPA)
Institut für Tierpathologie (ITPA) - Labor Krebstherapieresistenz
Madabhushi, Anant
Maillard, Marie
Barisoni, Laura
Horlings, Hugo Mark
Janowczyk, Andrew
Additional Credits
Institut für Tierpathologie (ITPA)
Series
NPJ digital medicine
Publisher
Nature Publishing Group
ISSN
2398-6352
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: ae9592 [15.12. 16:43]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
  • Audiovisual Material
  • Software & other digital items
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo