Pharmacokinetics and pharmacodynamics of inhaled nicotine salt and free-base using an e-cigarette: A randomized crossover study.
Options
BORIS DOI
Date of Publication
September 23, 2024
Publication Type
Article
Division/Institute
Contributor
Eap, Chin B | |
Benowitz, Neal L | |
Subject(s)
Series
Nicotine & tobacco research
ISSN or ISBN (if monograph)
1469-994X
Publisher
Oxford University Press
Language
English
Publisher DOI
PubMed ID
38597729
Uncontrolled Keywords
Description
BACKGROUND
Popular "pod-style" e-cigarettes commonly use nicotine salt-based e-liquids that cause less irritation when inhaled and can deliver higher nicotine concentrations than free-base nicotine. We aimed to investigate the pharmacokinetic and pharmacodynamic effects of different nicotine formulations (salt vs. free-base) and concentrations that might influence systemic nicotine absorption and appeal of e-cigarettes.
METHODS
In this randomized, double-blind, within-subject crossover study, 20 non nicotine-naïve participants were switched among three e-liquids (free-base nicotine 20mg/mL, nicotine salt 20mg/mL, nicotine salt 40mg/mL) using a refillable pod system and a standardized vaping protocol (one puff every 30 seconds, 10 puffs total). Serum nicotine concentrations and vital signs were assessed over 180 minutes; direct effects, craving, satisfaction, withdrawal, and respiratory symptoms were measured using questionnaires. CYP2A6 genotypes and the nicotine metabolite ratio were also assessed.
RESULTS
Eleven (55%) participants were male and the median age was 23.5 years (range 18-67). All three formulations differed significantly in peak serum nicotine concentration (baseline adjusted Cmax, median (range): 12.0ng/mL (1.6-27.3), 5.4ng/mL (1.9-18.7) and 3.0ng/mL (1.3-8.8) for nicotine salt 40mg/mL, nicotine salt 20mg/mL and free-base 20mg/mL, respectively). All groups reached Cmax 2.0-2.5min (median) after their last puff. Differences in subjective effects were not statistically significant. No serious adverse events were observed.
CONCLUSION
Free-base 20mg/mL formulations achieved lower blood nicotine concentrations than nicotine salt 20mg/mL, while 40mg/mL nicotine salt yielded concentrations similar to cigarette smoking. The findings can inform regulatory policy regarding e-liquids and their potential use in smoking cessation.
IMPLICATIONS
Nicotine salt formulations inhaled by an e-cigarette led to higher nicotine delivery compared to nicotine free-base formulations with the same nicotine concentration. These findings should be considered in future regulatory discussions. The 40mg/mL nicotine salt formulation showed similar nicotine delivery as combustible cigarettes, albeit at concentrations over the maximum limit for e-liquids allowed in the European Union. Nicotine delivery resembling combustible cigarettes might be beneficial for smokers willing to quit to adequately alleviate withdrawal symptoms. However, increased nicotine delivery can also pose a public health risk, raising concerns about abuse liability, especially among youth and non-smokers.
Popular "pod-style" e-cigarettes commonly use nicotine salt-based e-liquids that cause less irritation when inhaled and can deliver higher nicotine concentrations than free-base nicotine. We aimed to investigate the pharmacokinetic and pharmacodynamic effects of different nicotine formulations (salt vs. free-base) and concentrations that might influence systemic nicotine absorption and appeal of e-cigarettes.
METHODS
In this randomized, double-blind, within-subject crossover study, 20 non nicotine-naïve participants were switched among three e-liquids (free-base nicotine 20mg/mL, nicotine salt 20mg/mL, nicotine salt 40mg/mL) using a refillable pod system and a standardized vaping protocol (one puff every 30 seconds, 10 puffs total). Serum nicotine concentrations and vital signs were assessed over 180 minutes; direct effects, craving, satisfaction, withdrawal, and respiratory symptoms were measured using questionnaires. CYP2A6 genotypes and the nicotine metabolite ratio were also assessed.
RESULTS
Eleven (55%) participants were male and the median age was 23.5 years (range 18-67). All three formulations differed significantly in peak serum nicotine concentration (baseline adjusted Cmax, median (range): 12.0ng/mL (1.6-27.3), 5.4ng/mL (1.9-18.7) and 3.0ng/mL (1.3-8.8) for nicotine salt 40mg/mL, nicotine salt 20mg/mL and free-base 20mg/mL, respectively). All groups reached Cmax 2.0-2.5min (median) after their last puff. Differences in subjective effects were not statistically significant. No serious adverse events were observed.
CONCLUSION
Free-base 20mg/mL formulations achieved lower blood nicotine concentrations than nicotine salt 20mg/mL, while 40mg/mL nicotine salt yielded concentrations similar to cigarette smoking. The findings can inform regulatory policy regarding e-liquids and their potential use in smoking cessation.
IMPLICATIONS
Nicotine salt formulations inhaled by an e-cigarette led to higher nicotine delivery compared to nicotine free-base formulations with the same nicotine concentration. These findings should be considered in future regulatory discussions. The 40mg/mL nicotine salt formulation showed similar nicotine delivery as combustible cigarettes, albeit at concentrations over the maximum limit for e-liquids allowed in the European Union. Nicotine delivery resembling combustible cigarettes might be beneficial for smokers willing to quit to adequately alleviate withdrawal symptoms. However, increased nicotine delivery can also pose a public health risk, raising concerns about abuse liability, especially among youth and non-smokers.
File(s)
File | File Type | Format | Size | License | Publisher/Copright statement | Content | |
---|---|---|---|---|---|---|---|
ntae074.pdf | text | Adobe PDF | 764.89 KB | accepted |