• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Combining randomized and non-randomized data to predict heterogeneous effects of competing treatments.
 

Combining randomized and non-randomized data to predict heterogeneous effects of competing treatments.

Options
  • Details
  • Files
BORIS DOI
10.48350/194512
Publisher DOI
10.1002/jrsm.1717
PubMed ID
38501273
Description
Some patients benefit from a treatment while others may do so less or do not benefit at all. We have previously developed a two-stage network meta-regression prediction model that synthesized randomized trials and evaluates how treatment effects vary across patient characteristics. In this article, we extended this model to combine different sources of types in different formats: aggregate data (AD) and individual participant data (IPD) from randomized and non-randomized evidence. In the first stage, a prognostic model is developed to predict the baseline risk of the outcome using a large cohort study. In the second stage, we recalibrated this prognostic model to improve our predictions for patients enrolled in randomized trials. In the third stage, we used the baseline risk as effect modifier in a network meta-regression model combining AD, IPD randomized clinical trial to estimate heterogeneous treatment effects. We illustrated the approach in the re-analysis of a network of studies comparing three drugs for relapsing-remitting multiple sclerosis. Several patient characteristics influence the baseline risk of relapse, which in turn modifies the effect of the drugs. The proposed model makes personalized predictions for health outcomes under several treatment options and encompasses all relevant randomized and non-randomized evidence.
Date of Publication
2024-07
Publication Type
article
Subject(s)
600 - Technology::610 - Medicine & health
300 - Social sciences, sociology & anthropology::360 - Social problems & social services
Keyword(s)
combination of data sources network meta-analysis prediction model
Language(s)
en
Contributor(s)
Chalkou, Konstantina
Department of Clinical Research (DCR) - Statistics & Methodology (Heg)
Clinical Trials Unit Bern (CTU) - Statistics & Methodology (Heg)
Institut für Sozial- und Präventivmedizin (ISPM) - Evidence Synthesis Methods
Hamza, Tasnim A. A.
Institut für Sozial- und Präventivmedizin (ISPM) - Evidence Synthesis Methods
Institut für Sozial- und Präventivmedizin (ISPM)
Benkert, Pascal
Kuhle, Jens
Zecca, Chiara
Simoneau, Gabrielle
Pellegrini, Fabio
Manca, Andrea
Egger, Matthiasorcid-logo
Institut für Sozial- und Präventivmedizin (ISPM) - HIV, Hepatitis & Tubercolosis
Institut für Sozial- und Präventivmedizin (ISPM)
Salanti, Georgiaorcid-logo
Institut für Sozial- und Präventivmedizin (ISPM) - Evidence Synthesis Methods
Institut für Sozial- und Präventivmedizin (ISPM)
Additional Credits
Department of Clinical Research (DCR) - Statistics & Methodology (Heg)
Institut für Sozial- und Präventivmedizin (ISPM) - Evidence Synthesis Methods
Institut für Sozial- und Präventivmedizin (ISPM) - HIV, Hepatitis & Tubercolosis
Series
Research Synthesis Methods
Publisher
Wiley
ISSN
1759-2879
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: 4f1f0f [ 1.12. 12:07]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo