Efficient sampling-based Bayesian Active Learning for synaptic characterization.
Options
BORIS DOI
Publisher DOI
PubMed ID
37603559
Description
Bayesian Active Learning (BAL) is an efficient framework for learning the parameters of a model, in which input stimuli are selected to maximize the mutual information between the observations and the unknown parameters. However, the applicability of BAL to experiments is limited as it requires performing high-dimensional integrations and optimizations in real time. Current methods are either too time consuming, or only applicable to specific models. Here, we propose an Efficient Sampling-Based Bayesian Active Learning (ESB-BAL) framework, which is efficient enough to be used in real-time biological experiments. We apply our method to the problem of estimating the parameters of a chemical synapse from the postsynaptic responses to evoked presynaptic action potentials. Using synthetic data and synaptic whole-cell patch-clamp recordings, we show that our method can improve the precision of model-based inferences, thereby paving the way towards more systematic and efficient experimental designs in physiology.
Date of Publication
2023-08
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
Language(s)
en
Additional Credits
Institut für Physiologie
Institut für Physiologie - Theoretical Neuroscience Group
Series
PLoS computational biology
Publisher
Public Library of Science
ISSN
1553-734X
Access(Rights)
open.access