• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. DeepBreath-automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5 countries.
 

DeepBreath-automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5 countries.

Options
  • Details
  • Files
BORIS DOI
10.48350/183165
Publisher DOI
10.1038/s41746-023-00838-3
PubMed ID
37268730
Description
The interpretation of lung auscultation is highly subjective and relies on non-specific nomenclature. Computer-aided analysis has the potential to better standardize and automate evaluation. We used 35.9 hours of auscultation audio from 572 pediatric outpatients to develop DeepBreath : a deep learning model identifying the audible signatures of acute respiratory illness in children. It comprises a convolutional neural network followed by a logistic regression classifier, aggregating estimates on recordings from eight thoracic sites into a single prediction at the patient-level. Patients were either healthy controls (29%) or had one of three acute respiratory illnesses (71%) including pneumonia, wheezing disorders (bronchitis/asthma), and bronchiolitis). To ensure objective estimates on model generalisability, DeepBreath is trained on patients from two countries (Switzerland, Brazil), and results are reported on an internal 5-fold cross-validation as well as externally validated (extval) on three other countries (Senegal, Cameroon, Morocco). DeepBreath differentiated healthy and pathological breathing with an Area Under the Receiver-Operator Characteristic (AUROC) of 0.93 (standard deviation [SD] ± 0.01 on internal validation). Similarly promising results were obtained for pneumonia (AUROC 0.75 ± 0.10), wheezing disorders (AUROC 0.91 ± 0.03), and bronchiolitis (AUROC 0.94 ± 0.02). Extval AUROCs were 0.89, 0.74, 0.74 and 0.87 respectively. All either matched or were significant improvements on a clinical baseline model using age and respiratory rate. Temporal attention showed clear alignment between model prediction and independently annotated respiratory cycles, providing evidence that DeepBreath extracts physiologically meaningful representations. DeepBreath provides a framework for interpretable deep learning to identify the objective audio signatures of respiratory pathology.
Date of Publication
2023-06-02
Publication Type
Article
Subject(s)
600 - Technology::610 - Medicine & health
Language(s)
en
Contributor(s)
Heitmann, Julien
Glangetas, Alban
Doenz, Jonathan
Dervaux, Juliane
Shama, Deeksha M
Garcia, Daniel Hinjos
Benissa, Mohamed Rida
Cantais, Aymeric
Perez, Alexandre
Müller, Daniel
Chavdarova, Tatjana
Ruchonnet-Metrailler, Isabelle
Siebert, Johan N
Lacroix, Laurence
Jaggi, Martin
Gervaix, Alain
Hartley, Mary-Anne
Universitätsklinik für Kinderheilkunde
Additional Credits
Universitätsklinik für Kinderheilkunde
Series
NPJ digital medicine
Publisher
Springer Nature
ISSN
2398-6352
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: ae9592 [15.12. 16:43]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
  • Audiovisual Material
  • Software & other digital items
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo