• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Deep computational image analysis of immune cell niches reveals treatment-specific outcome associations in lung cancer.
 

Deep computational image analysis of immune cell niches reveals treatment-specific outcome associations in lung cancer.

Options
  • Details
  • Files
BORIS DOI
10.48350/183131
Publisher DOI
10.1038/s41698-023-00403-x
PubMed ID
37264091
Description
The tumor immune composition influences prognosis and treatment sensitivity in lung cancer. The presence of effective adaptive immune responses is associated with increased clinical benefit after immune checkpoint blockers. Conversely, immunotherapy resistance can occur as a consequence of local T-cell exhaustion/dysfunction and upregulation of immunosuppressive signals and regulatory cells. Consequently, merely measuring the amount of tumor-infiltrating lymphocytes (TILs) may not accurately reflect the complexity of tumor-immune interactions and T-cell functional states and may not be valuable as a treatment-specific biomarker. In this work, we investigate an immune-related biomarker (PhenoTIL) and its value in associating with treatment-specific outcomes in non-small cell lung cancer (NSCLC). PhenoTIL is a novel computational pathology approach that uses machine learning to capture spatial interplay and infer functional features of immune cell niches associated with tumor rejection and patient outcomes. PhenoTIL's advantage is the computational characterization of the tumor immune microenvironment extracted from H&E-stained preparations. Association with clinical outcome and major non-small cell lung cancer (NSCLC) histology variants was studied in baseline tumor specimens from 1,774 lung cancer patients treated with immunotherapy and/or chemotherapy, including the clinical trial Checkmate 057 (NCT01673867).
Date of Publication
2023-06-01
Publication Type
article
Subject(s)
500 - Science::570 - Life sciences; biology
600 - Technology::610 - Medicine & health
Language(s)
en
Contributor(s)
Barrera, Cristian
Corredor, Germán
Viswanathan, Vidya Sankar
Ding, Ruiwen
Toro, Paula
Fu, Pingfu
Buzzy, Christina
Lu, Cheng
Velu, Priya
Zens, Philipp Immanuel
Institut für Gewebemedizin und Pathologie - Immunpathologie 5
Institut für Gewebemedizin und Pathologie
Berezowska, Sabina Annaorcid-logo
Institut für Gewebemedizin und Pathologie - Klinische Pathologie
Institut für Gewebemedizin und Pathologie
Belete, Merzu
Balli, David
Chang, Han
Baxi, Vipul
Syrigos, Konstantinos
Rimm, David L
Velcheti, Vamsidhar
Schalper, Kurt
Romero, Eduardo
Madabhushi, Anant
Additional Credits
Institut für Gewebemedizin und Pathologie - Immunpathologie 5
Institut für Gewebemedizin und Pathologie - Klinische Pathologie
Series
NPJ precision oncology
Publisher
Springer Nature
ISSN
2397-768X
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: 4f1f0f [ 1.12. 12:07]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo