• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Genetic parameters of feather corticosterone and fault bars and correlations with production traits in turkeys (Meleagris gallopavo).
 

Genetic parameters of feather corticosterone and fault bars and correlations with production traits in turkeys (Meleagris gallopavo).

Options
  • Details
BORIS DOI
10.48350/176758
Date of Publication
January 2, 2023
Publication Type
Article
Division/Institute

Institut für Genetik

Contributor
Leishman, Emily M
Vanderhout, Ryley J
Abdalla, Emhimad A
van Staaveren, Nienke
Naim, Anna
Barbut, Shai
Wood, Benjamin J
Harlander-Matauschek, Alexandra
Baes, Christine Francoiseorcid-logo
Institut für Genetik
Subject(s)

500 - Science::590 - ...

600 - Technology::630...

Series
Scientific reports
ISSN or ISBN (if monograph)
2045-2322
Publisher
Springer Nature
Language
English
Publisher DOI
10.1038/s41598-022-26734-6
PubMed ID
36593340
Description
Robustness can refer to an animal's ability to overcome perturbations. Intense selection for production traits in livestock has resulted in reduced robustness which has negative implications for livability as well as production. There is increasing emphasis on improving robustness through poultry breeding, which may involve identifying novel phenotypes that could be used in selection strategies. The hypothalamic-pituitary-adrenal (HPA) axis and associated hormones (e.g., corticosterone) participate in many metabolic processes that are related to robustness. Corticosterone can be measured non-invasively in feathers (FCORT) and reflects the average HPA axis activity over the feather growing period, however measurement is expensive and time consuming. Fault bars are visible feather deformities that may be related to HPA axis activity and may be a more feasible indicator trait. In this study, we estimated variance components for FCORT and fault bars in a population of purebred turkeys as well as their genetic and partial phenotypic correlations with other economically relevant traits including growth and efficiency, carcass yield, and meat quality. The estimated heritability for FCORT was 0.21 ± 0.07 and for the fault bar traits (presence, incidence, severity, and index) estimates ranged from 0.09 to 0.24. The genetic correlation of FCORT with breast weight, breast meat yield, fillet weight, and ultimate pH were estimated at -0.34 ± 0.21, -0.45 ± 0.23, -0.33 ± 0.24, and 0.32 ± 0.24, respectively. The phenotypic correlations of FCORT with breast weight, breast meat yield, fillet weight, drum weight, and walking ability were -0.16, -0.23, -0.18, 0.17, and 0.21, respectively. Some fault bar traits showed similar genetic correlations with breast weight, breast meat yield, and walking ability but the magnitude was lower than those with FCORT. While the dataset is limited and results should be interpreted with caution, this study indicates that selection for traits related to HPA axis activity is possible in domestic turkeys. Further research should focus on investigating the association of these traits with other robustness-related traits and how to potentially implement these traits in turkey breeding.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/116814
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
s41598-022-26734-6.pdftextAdobe PDF1.09 MBAttribution (CC BY 4.0)publishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 396f6f [24.09. 11:22]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo