• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Research Data
  • Organizations
  • Researchers
  • More
  • Statistics
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Formulating elafibranor and obeticholic acid with phospholipids decreases drug-induced association of SPARC to extracellular vesicles from LX-2 human hepatic stellate cells.
 

Formulating elafibranor and obeticholic acid with phospholipids decreases drug-induced association of SPARC to extracellular vesicles from LX-2 human hepatic stellate cells.

Options
  • Details
  • Files
BORIS DOI
10.48350/175531
Publisher DOI
10.1016/j.ejpb.2022.11.025
PubMed ID
36470521
Description
Chronic hepatic diseases often compromise liver function and are directly responsible for up to two million yearly deaths world-wide. There are yet no treatment options to solve this global medical need. Experimental drugs elafibranor (Ela) and obeticholic acid (OA) appeared promising in numerous earlier studies, but they recently struggled to show significant benefits in patients. Little is known on the drugs' impact on hepatic stellate cells (HSCs), key players in liver fibrogenesis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs, including differences in their extracellular vesicles (EVs). Here, we newly formulated Ela and OA in PPC liposomes and evaluated their performance on the LX-2 (human HSC) cell line through our rigorous methods of EV-analysis, now expanded to include lipidomics. We show that direct treatments with Ela and OA increase EV-associated secreted protein acidic and cysteine rich (SPARC), a matricellular protein overexpressed in fibrogenesis. However, our results suggest that this potentially damaging drugs' action to HSCs could be mitigated when delivering them with lipid-based formulations, most notably with a PPC-rich phospholipid inducing specific changes in the cellular and EV phospholipid composition. Thus, EV analysis substantially deepens evaluations of drug performances and delivery strategies.
Date of Publication
2023-01
Publication Type
Article
Subject(s)
500 - Science::570 - Life sciences; biology
500 - Science::540 - Chemistry
Keyword(s)
SPARC elafibranor extracellular vesicles obeticholic acid phospholipids
Language(s)
en
Contributor(s)
Zivko, Cristina
Departement für Chemie, Biochemie und Pharmazie (DCBP)
Witt, Finja
Koeberle, Andreas
Fuhrmann, Gregor
Luciani, Paolaorcid-logo
Departement für Chemie, Biochemie und Pharmazie (DCBP)
Additional Credits
Departement für Chemie, Biochemie und Pharmazie (DCBP)
Series
European journal of pharmaceutics and biopharmaceutics
Publisher
Elsevier
ISSN
0939-6411
Access(Rights)
open.access
Show full item
BORIS Portal
Bern Open Repository and Information System
Build: ae9592 [15.12. 16:43]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
  • Audiovisual Material
  • Software & other digital items
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo