Publication:
The Southern Hemisphere at glacial terminations: insights from the Dome C ice core

cris.virtual.author-orcid0000-0002-2787-4221
cris.virtualsource.author-orcid4907157f-b29f-4ec5-998f-f8594abcc10f
cris.virtualsource.author-orcidfb61dda9-0e41-470b-ac5f-45c8d921b124
cris.virtualsource.author-orcid8df26330-ec25-4994-bd35-95c0ff312304
dc.contributor.authorRöthlisberger, R.
dc.contributor.authorMudelsee, M.
dc.contributor.authorBigler, Matthias
dc.contributor.authorde Angelis, M.
dc.contributor.authorFischer, Hubertus
dc.contributor.authorHansson, M.
dc.contributor.authorLambert, Fabrice
dc.contributor.authorMasson-Delmotte, V.
dc.contributor.authorSime, L.
dc.contributor.authorUdisti, R.
dc.contributor.authorWolff, E. W.
dc.date.accessioned2024-10-14T10:17:38Z
dc.date.available2024-10-14T10:17:38Z
dc.date.issued2008
dc.description.abstractThe many different proxy records from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core allow for the first time a comparison of nine glacial terminations in great detail. Despite the fact that all terminations cover the transition from a glacial maximum into an interglacial, there are large differences between single terminations. For some terminations, Antarctic temperature increased only moderately, while for others, the amplitude of change at the termination was much larger. For the different terminations, the rate of change in temperature is more similar than the magnitude or duration of change. These temperature changes were accompanied by vast changes in dust and sea salt deposition all over Antarctica. Here we investigate the phasing between a South American dust proxy (non-sea-salt calcium flux, nssCa2+), a sea ice proxy (sea salt sodium flux, ssNa+) and a proxy for Antarctic temperature (deuterium, δD). In particular, we look into whether a similar sequence of events applies to all terminations, despite their different characteristics. All proxies are derived from the EPICA Dome C ice core, resulting in a relative dating uncertainty between the proxies of less than 20 years. At the start of the terminations, the temperature (δD) increase and dust (nssCa2+ flux) decrease start synchronously. The sea ice proxy (ssNa+ flux), however, only changes once the temperature has reached a particular threshold, approximately 5°C below present day temperatures (corresponding to a δD value of −420‰). This reflects to a large extent the limited sensitivity of the sea ice proxy during very cold periods with large sea ice extent. At terminations where this threshold is not reached (TVI, TVIII), ssNa+ flux shows no changes. Above this threshold, the sea ice proxy is closely coupled to the Antarctic temperature, and interglacial levels are reached at the same time for both ssNa+ and δD. On the other hand, once another threshold at approximately 2°C below present day temperature is passed (corresponding to a δD value of −402‰), nssCa2+ flux has reached interglacial levels and does not change any more, despite further warming. This threshold behaviour most likely results from a combination of changes to the threshold friction velocity for dust entrainment and to the distribution of surface wind speeds in the dust source region.
dc.description.numberOfPages12
dc.description.sponsorshipPhysikalisches Institut, Klima- und Umweltphysik (KUP)
dc.identifier.doi10.7892/boris.37305
dc.identifier.isi000262410700012
dc.identifier.publisherDOI10.5194/cp-4-345-2008
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/110527
dc.language.isoen
dc.publisherCopernicus Publications
dc.publisher.placeGöttingen
dc.relation.ispartofClimate of the past
dc.relation.issn1814-9324
dc.relation.organizationDCD5A442BF29E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C08FE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C44AE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::530 - Physics
dc.titleThe Southern Hemisphere at glacial terminations: insights from the Dome C ice core
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
dspace.file.typetext
oaire.citation.endPage356
oaire.citation.issue4
oaire.citation.startPage345
oaire.citation.volume4
oairecerif.author.affiliationPhysikalisches Institut, Klima- und Umweltphysik (KUP)
oairecerif.author.affiliationPhysikalisches Institut, Klima- und Umweltphysik (KUP)
oairecerif.author.affiliationPhysikalisches Institut, Klima- und Umweltphysik (KUP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2021-10-18 09:29:21
unibe.description.ispublishedpub
unibe.eprints.legacyId37305
unibe.journal.abbrevTitleCLIM PAST
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 2 of 2
Name:
cp-4-345-2008.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published
Name:
roethlisberger08clp-supplement.pdf
Size:
202.04 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
supplemental

Collections