Publication:
A data-driven approach to monitoring data collection in an online panel

cris.virtual.author-orcid0000-0002-9010-5927
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid7d386fd3-a98e-40a6-a6ed-6a3fe4cbf2d5
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorHerzing, Jessica
dc.contributor.authorVandenplas, Caroline
dc.contributor.authorAxenfeld, Julian B.
dc.date.accessioned2024-10-09T17:06:54Z
dc.date.available2024-10-09T17:06:54Z
dc.date.issued2019
dc.description.abstractLongitudinal or panel surveys suffer from panel attrition which may result in biased estimates. Online panels are no exceptions to this phenomenon, but offer great possibilities in monitoring and managing the data-collection phase and response-enhancement features (such as reminders), due to real-time availability of paradata. This paper presents a data-driven approach to monitor the data-collection phase and to inform the adjustment of response-enhancement features during data collection across online panel waves, which takes into account the characteristics of an ongoing panel wave. For this purpose, we study the evolution of the daily response proportion in each wave of a probability-based online panel. Using multilevel models, we predict the data-collection evolution per wave day. In our example, the functional form of the data-collection evolution is quintic. The characteristics affecting the shape of the data-collection evolution are those of the specific wave day and not of the panel wave itself. In addition, we simulate the monitoring of the daily response proportion of one panel wave and find that the timing of sending reminders could be adjusted after 20 consecutive panel waves to keep the data-collection phase efficient. Our results demonstrate the importance of re-evaluating the characteristics of the data-collection phase, such as the timing of reminders, across the lifetime of an online panel to keep the fieldwork efficient.
dc.description.numberOfPages20
dc.description.sponsorshipInterfakultäres Zentrum für Bildungsforschung - WISO
dc.identifier.doi10.48350/166961
dc.identifier.publisherDOI10.1332/175795919x15694136006114
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/68449
dc.language.isoen
dc.publisherBristol University Press
dc.relation.ispartofLongitudinal and life course studies
dc.relation.issn1757-9597
dc.relation.organization3C20C72883C540D5A24ABD230F64DE03
dc.relation.organizationA38B712E1F9B437BA333E38F018702E0
dc.subject.ddc300 - Social sciences, sociology & anthropology::310 - Statistics
dc.subject.ddc300 - Social sciences, sociology & anthropology::320 - Political science
dc.titleA data-driven approach to monitoring data collection in an online panel
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage452
oaire.citation.issue4
oaire.citation.startPage433
oaire.citation.volume10
oairecerif.author.affiliationInterfakultäres Zentrum für Bildungsforschung - WISO
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation2#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation2#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation2#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation3#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation3#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation3#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation4#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation4#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation4#PLACEHOLDER_PARENT_METADATA_VALUE#
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-03-21 12:52:19
unibe.description.ispublishedpub
unibe.eprints.legacyId166961
unibe.journal.abbrevTitleLLCS
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
HerzingEtAl_LLCS_fieldMonitoring_2019.pdf
Size:
739.68 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
accepted

Collections