Publication:
Series representation of time-stable stochastic processes

cris.virtual.author-orcid0000-0003-2502-0334
cris.virtualsource.author-orcid06b5b9e7-e972-4733-84b9-589838e3cf08
dc.contributor.authorKopp, Christoph
dc.contributor.authorMolchanov, Ilya
dc.date.accessioned2024-10-08T15:36:02Z
dc.date.available2024-10-08T15:36:02Z
dc.date.issued2018
dc.description.abstractA stochastically continuous process ɛ(t), t­ ≥ 0, is said to be time-stable if the sum of n i.i.d. copies of ɛ equals in distribution the time-scaled stochastic process ɛ(nt), t­ ≥ 0. The paper advances the understanding of time-stable processes by means of their LePage series representations as the sum of i.i.d. processes with the arguments scaled by the sequence of successive points of the unit intensity Poisson process on [0, ∞). These series yield numerous examples of stochastic processes that share one-dimensional distributions with a Lévy process.
dc.description.numberOfPages17
dc.description.sponsorshipInstitut für Mathematische Statistik und Versicherungslehre (IMSV)
dc.identifier.doi10.7892/boris.127999
dc.identifier.publisherDOI10.19195/0208-4147.38.2.4
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/65232
dc.language.isoen
dc.publisherKazimierz Urbanik Center for Probability and Mathematical Statistics
dc.relation.ispartofProbability and mathematical statistics
dc.relation.issn0208-4147
dc.relation.organizationDCD5A442C025E17DE0405C82790C4DE2
dc.subject.ddc500 - Science::510 - Mathematics
dc.titleSeries representation of time-stable stochastic processes
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage315
oaire.citation.issue2
oaire.citation.startPage299
oaire.citation.volume38
oairecerif.author.affiliationInstitut für Mathematische Statistik und Versicherungslehre (IMSV)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2019-12-08 07:33:31
unibe.description.ispublishedpub
unibe.eprints.legacyId127999
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
38.2.4.pdf
Size:
119.8 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections