Publication:
The nature of the radius valley

cris.virtual.author-orcid0000-0003-1231-2389
cris.virtual.author-orcid0000-0002-1013-2811
cris.virtualsource.author-orcide6fd046f-cc58-4099-9442-b5028f7efa70
cris.virtualsource.author-orcid95c58bf6-9ea8-4ad7-8e7d-b74d4ece2e93
cris.virtualsource.author-orcidf1569375-73f8-4a44-ba00-e47eb4913fe2
dc.contributor.authorVenturini Corbellini, Julia Elisa
dc.contributor.authorGuilera, Octavio M.
dc.contributor.authorHaldemann, Jonas
dc.contributor.authorRonco, María P.
dc.contributor.authorMordasini, Christoph
dc.date.accessioned2024-12-13T15:54:14Z
dc.date.available2024-12-13T15:54:14Z
dc.date.issued2020
dc.description.abstractThe existence of a Radius Valley in the Kepler size distribution stands as one of the most important observational constraints to understand the origin and composition of exoplanets with radii between that of Earth and Neptune. The goal of this work is to provide insights into the existence of the Radius Valley from, first, a pure formation point of view, and second, a combined formation-evolution model. We run global planet formation simulations including the evolution of dust by coagulation, drift and fragmentation; and the evolution of the gaseous disc by viscous accretion and photoevaporation. A planet grows from a moon-mass embryo by either silicate or icy pebble accretion, depending on its position with respect to the water ice line. We account for gas accretion and type-I/II migration. We perform an extensive parameter study evaluating a wide range in disc properties and embryo's initial location. We account for photoevaporation driven mass-loss after formation. We find that due to the change in dust properties at the water ice line, rocky cores form typically with ∼3 M⊕ and have a maximum mass of ∼5 M⊕, while icy cores peak at ∼10 M⊕, with masses lower than 5 M⊕ being scarce. When neglecting the gaseous envelope, rocky and icy cores account naturally for the two peaks of the Kepler size distribution. The presence of massive envelopes for cores more massive than ∼10 M⊕ inflates the radii of those planets above 4 R⊕. While the first peak of the Kepler size distribution is undoubtedly populated by bare rocky cores, the second peak can host water-rich planets with thin H-He atmospheres. Some envelope-loss mechanism should operate efficiently at short orbital periods to explain the presence of ∼10-40 M⊕ planets falling in the second peak of the size distribution.
dc.description.sponsorshipPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
dc.description.sponsorshipInternational Space Science Institute (ISSI)
dc.identifier.doi10.48350/152755
dc.identifier.publisherDOI10.1051/0004-6361/202039141
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/193611
dc.language.isoen
dc.publisherEDP Sciences
dc.relation.ispartofAstronomy and astrophysics
dc.relation.issn0004-6361
dc.relation.organizationDCD5A442BE9BE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C44AE17DE0405C82790C4DE2
dc.relation.organizationF741DD9E19B03C32E043960C5C82F84E
dc.subject.ddc500 - Science
dc.subject.ddc500 - Science::520 - Astronomy
dc.subject.ddc600 - Technology::620 - Engineering
dc.titleThe nature of the radius valley
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
dspace.file.typetext
oaire.citation.startPageL1
oaire.citation.volume643
oairecerif.author.affiliationInternational Space Science Institute (ISSI)
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2021-03-10 10:32:53
unibe.description.ispublishedpub
unibe.eprints.legacyId152755
unibe.journal.abbrevTitleASTRON ASTROPHYS
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 2 of 2
Name:
2008.05513.pdf
Size:
3.39 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
accepted
Name:
aa39141-20.pdf
Size:
3.03 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections