Publication:
Active Learning with Context Sampling and One-vs-Rest Entropy for Semantic Segmentation

cris.virtual.author-orcid0000-0001-6791-4753
cris.virtualsource.author-orcidfc6eef11-c073-42b9-8f59-c82468755f5c
cris.virtualsource.author-orcid261781ae-6f3c-42d9-b0bd-5190cfc67866
cris.virtualsource.author-orcid4b132b22-2fa7-45de-baed-3e055a89eae4
dc.contributor.authorWu, Fei
dc.contributor.authorMarquez-Neila, Pablo
dc.contributor.authorRafii-Tari, Hedyeh
dc.contributor.authorSznitman, Raphael
dc.date.accessioned2025-01-10T07:29:19Z
dc.date.available2025-01-10T07:29:19Z
dc.date.issued2025-02-28
dc.description.abstractMulti-class semantic segmentation remains a cornerstone challenge in computer vision. Yet, dataset creation remains excessively demanding in time and effort, especially for specialized domains. Active Learning (AL) mitigates this challenge by selecting data points for annotation strategically. However, existing patch-based AL methods often overlook boundary pixels critical information, essential for accurate segmentation. We present OREAL, a novel patch-based AL method designed for multi-class semantic segmentation. OREAL enhances boundary detection by employing maximum aggregation of pixel-wise uncertainty scores. Additionally, we introduce one-vs-rest entropy, a novel uncertainty score function that computes class-wise uncertainties while achieving implicit class balancing during dataset creation. Comprehensive experiments across diverse datasets and model architectures validate our hypothesis.
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research - Motorlearning and Neurorehabilitation
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research
dc.description.sponsorshipARTORG Center - Artificial Intelligence in Medical Image Computing
dc.identifier.arxiv2412.06470
dc.identifier.doi10.48620/84541
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/202736
dc.language.isoen
dc.publisherCornell University
dc.relation.ispartofseriesarXiv
dc.titleActive Learning with Context Sampling and One-vs-Rest Entropy for Semantic Segmentation
dc.typeworking_paper
dspace.entity.typePublication
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - Motorlearning and Neurorehabilitation
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliationARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.author.affiliation2ARTORG Center - Gerontechnology and Rehabilitation
oairecerif.author.affiliation2ARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliation3ARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.identifier.urlhttps://doi.org/10.48550/arXiv.2412.06470
unibe.contributor.correspondingWu, Fei Hugo
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.corresponding.affiliationARTORG Center - Artificial Intelligence in Medical Image Computing
unibe.description.ispublishedpub
unibe.refereedfalse

Files

Original bundle
Now showing 1 - 1 of 1
Name:
2412.06470v1.pdf
Size:
3.1 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections