Publication: The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion.
| cris.virtualsource.author-orcid | 77b0bf81-231a-478d-9b05-de72aa744f51 | |
| datacite.rights | open.access | |
| dc.contributor.author | Reimann, Maja | |
| dc.contributor.author | Avsar, Korkut | |
| dc.contributor.author | DiNardo, Andrew R | |
| dc.contributor.author | Goldmann, Torsten | |
| dc.contributor.author | Günther, Gunar | |
| dc.contributor.author | Hoelscher, Michael | |
| dc.contributor.author | Ibraim, Elmira | |
| dc.contributor.author | Kalsdorf, Barbara | |
| dc.contributor.author | Kaufmann, Stefan H E | |
| dc.contributor.author | Köhler, Niklas | |
| dc.contributor.author | Mandalakas, Anna M | |
| dc.contributor.author | Maurer, Florian P | |
| dc.contributor.author | Müller, Marius | |
| dc.contributor.author | Nitschkowski, Dörte | |
| dc.contributor.author | Olaru, Ioana D | |
| dc.contributor.author | Popa, Cristina | |
| dc.contributor.author | Rachow, Andrea | |
| dc.contributor.author | Rolling, Thierry | |
| dc.contributor.author | Salzer, Helmut J F | |
| dc.contributor.author | Sanchez-Carballo, Patricia | |
| dc.contributor.author | Schuhmann, Maren | |
| dc.contributor.author | Schaub, Dagmar | |
| dc.contributor.author | Spinu, Victor | |
| dc.contributor.author | Terhalle, Elena | |
| dc.contributor.author | Unnewehr, Markus | |
| dc.contributor.author | Zielinski, Nika J | |
| dc.contributor.author | Heyckendorf, Jan | |
| dc.contributor.author | Lange, Christoph | |
| dc.date.accessioned | 2025-02-25T13:25:09Z | |
| dc.date.available | 2025-02-25T13:25:09Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Rationale Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment.Objective Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy.Methods Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.Results The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of r=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of r=0.98.Conclusion We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to M. tuberculosis culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice. | |
| dc.description.sponsorship | Clinic of Pneumology and Allergology | |
| dc.identifier.doi | 10.48620/85511 | |
| dc.identifier.pmid | 39911144 | |
| dc.identifier.publisherDOI | 10.20411/pai.v10i1.770 | |
| dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/205112 | |
| dc.language.iso | en | |
| dc.publisher | Case Western Reserve University | |
| dc.relation.ispartof | Pathogens and Immunity | |
| dc.relation.issn | 2469-2964 | |
| dc.subject | biomarker | |
| dc.subject | precision medicine | |
| dc.subject | systems biology | |
| dc.subject | therapy response | |
| dc.subject | tuberculosis treatment | |
| dc.subject.ddc | 600 - Technology::610 - Medicine & health | |
| dc.title | The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion. | |
| dc.type | article | |
| dspace.entity.type | Publication | |
| dspace.file.type | text | |
| oaire.citation.endPage | 139 | |
| oaire.citation.issue | 1 | |
| oaire.citation.startPage | 120 | |
| oaire.citation.volume | 10 | |
| oairecerif.author.affiliation | Clinic of Pneumology and Allergology | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.contributor.role | author | |
| unibe.description.ispublished | pub | |
| unibe.refereed | true | |
| unibe.subtype.article | journal |
Files
Original bundle
1 - 1 of 1
- Name:
- 770-Reimann12925b.pdf
- Size:
- 2.26 MB
- Format:
- Adobe Portable Document Format
- File Type:
- text
- License:
- https://creativecommons.org/licenses/by/4.0
- Content:
- published