Publication:
The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion.

cris.virtualsource.author-orcid77b0bf81-231a-478d-9b05-de72aa744f51
datacite.rightsopen.access
dc.contributor.authorReimann, Maja
dc.contributor.authorAvsar, Korkut
dc.contributor.authorDiNardo, Andrew R
dc.contributor.authorGoldmann, Torsten
dc.contributor.authorGünther, Gunar
dc.contributor.authorHoelscher, Michael
dc.contributor.authorIbraim, Elmira
dc.contributor.authorKalsdorf, Barbara
dc.contributor.authorKaufmann, Stefan H E
dc.contributor.authorKöhler, Niklas
dc.contributor.authorMandalakas, Anna M
dc.contributor.authorMaurer, Florian P
dc.contributor.authorMüller, Marius
dc.contributor.authorNitschkowski, Dörte
dc.contributor.authorOlaru, Ioana D
dc.contributor.authorPopa, Cristina
dc.contributor.authorRachow, Andrea
dc.contributor.authorRolling, Thierry
dc.contributor.authorSalzer, Helmut J F
dc.contributor.authorSanchez-Carballo, Patricia
dc.contributor.authorSchuhmann, Maren
dc.contributor.authorSchaub, Dagmar
dc.contributor.authorSpinu, Victor
dc.contributor.authorTerhalle, Elena
dc.contributor.authorUnnewehr, Markus
dc.contributor.authorZielinski, Nika J
dc.contributor.authorHeyckendorf, Jan
dc.contributor.authorLange, Christoph
dc.date.accessioned2025-02-25T13:25:09Z
dc.date.available2025-02-25T13:25:09Z
dc.date.issued2024
dc.description.abstractRationale Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment.Objective Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy.Methods Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.Results The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of r=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of r=0.98.Conclusion We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to M. tuberculosis culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice.
dc.description.sponsorshipClinic of Pneumology and Allergology
dc.identifier.doi10.48620/85511
dc.identifier.pmid39911144
dc.identifier.publisherDOI10.20411/pai.v10i1.770
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/205112
dc.language.isoen
dc.publisherCase Western Reserve University
dc.relation.ispartofPathogens and Immunity
dc.relation.issn2469-2964
dc.subjectbiomarker
dc.subjectprecision medicine
dc.subjectsystems biology
dc.subjecttherapy response
dc.subjecttuberculosis treatment
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleThe TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage139
oaire.citation.issue1
oaire.citation.startPage120
oaire.citation.volume10
oairecerif.author.affiliationClinic of Pneumology and Allergology
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
770-Reimann12925b.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections