Publication:
The effect of thermal conductivity on the outgassing and local gas dynamics from cometary nuclei

cris.virtualsource.author-orcideff71030-73f1-4a75-992f-cbb29189425d
cris.virtualsource.author-orcid7dce8cdb-b585-42a8-97f5-9af73c0527a4
cris.virtualsource.author-orciddaafe3cf-846c-4389-8b9c-7b43695c374d
cris.virtualsource.author-orcid3de2f4d6-f169-4c8c-9a2d-37a45466fc1f
datacite.rightsrestricted
dc.contributor.authorPinzón Rodriguez, Olga Janeth
dc.contributor.authorMarschall, R.
dc.contributor.authorGerig, Selina-Barbara
dc.contributor.authorHerny, Clémence Emilie Lucile
dc.contributor.authorWu, J. S.
dc.contributor.authorThomas, Nicolas
dc.date.accessioned2024-10-11T16:35:27Z
dc.date.available2024-10-11T16:35:27Z
dc.date.issued2021
dc.description.abstractAims. The aim of this work is to investigate the parameters influencing the generation of the inner comae of a comet with a spher- ical nucleus and to model the gas activity distribution around its nuclei. Here, we investigate the influence of thermal conductivity combined with sub-surface H2O and CO2-ice sources on insolation-driven sublimation and the resulting gas flow field. In the process, we adopted some of the rotational and surface properties of the target of the Rosetta mission, comet 67P/Churyumov-Gerasimenko (67P/CG). Methods. We used a simplified model of heat transport through the surface layer to establish sublimation rates from a H2O- and CO2-ice sub-surface into a vacuum. We then applied the 3D Direct Simulation Monte Carlo method to model the coma as a sublimation- driven flow. The free parameters of the model were used to test the range of effects arising from thermal inertia and the depth of the source on the gas outflow. Results. Thermal inertia and the depth of the sublimation front can have a strong effect on the emission distribution of the flow at the surface. In models with a thermal inertia up to 80 TIU (thermal inertia units: J m−2 K−1 s−1/2), the H2O distribution can be rotated about the rotation axis by about 20◦ relative to models with no thermal lag. For CO2, the maximum activity can be shifted towards the sunset terminator with activity going far into the nightside for cases with low thermal diffusivity. The presence of a small amount of CO2 can reduce the presence of H2O by at least an order of magnitude on the nightside by blocking H2O flow. In addition, CO2 can also decrease the speed of the mixed flow in the same region up to 200 m s−1, compared to cases with no CO2 activity. Conclusions. Even low values of the thermal inertia can substantially modify the gas flow field. Including CO2 leads to strong varia- tions in the local CO2/H2O density ratio between the dayside and nightside. CO2 can dominate the gas composition above the nightside and can also act to modify the H2O flow field close to the terminator.
dc.description.sponsorshipNCCR PlanetS
dc.description.sponsorshipPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
dc.identifier.doi10.48350/170299
dc.identifier.publisherDOI10.1051/0004-6361/202039824
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/85302
dc.language.isoen
dc.publisherEDP Sciences
dc.relation.ispartofAstronomy and astrophysics
dc.relation.issn0004-6361
dc.relation.organizationDCD5A442BE9BE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C44AE17DE0405C82790C4DE2
dc.relation.organizationF741DD9E19B03C32E043960C5C82F84E
dc.subject.ddc500 - Science::520 - Astronomy
dc.subject.ddc600 - Technology::620 - Engineering
dc.titleThe effect of thermal conductivity on the outgassing and local gas dynamics from cometary nuclei
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issueA20
oaire.citation.startPageA20
oaire.citation.volume655
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
oairecerif.author.affiliationNCCR PlanetS
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-06-02 07:11:26
unibe.description.ispublishedpub
unibe.eprints.legacyId170299
unibe.journal.abbrevTitleASTRON ASTROPHYS
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
The_effect_of_thermal_conductivity_on_the_outgassing_and_local_gas_dynamics_from_cometary_nuclei_-_aa39824-20.pdf
Size:
25.34 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections