Publication:
Predicting outcomes at the individual patient level: what is the best method?

cris.virtual.author-orcid0000-0002-3830-8508
cris.virtual.author-orcid0000-0002-0955-7572
cris.virtualsource.author-orcidade91a16-6e2b-4d1c-b538-15aac7c36747
cris.virtualsource.author-orcide1dba832-8d83-4311-9d71-ba02eaa0afba
dc.contributor.authorLiu, Qiang
dc.contributor.authorOstinelli, Edoardo Giuseppe
dc.contributor.authorDe Crescenzo, Franco
dc.contributor.authorLi, Zhenpeng
dc.contributor.authorTomlinson, Anneka
dc.contributor.authorSalanti, Georgia
dc.contributor.authorCipriani, Andrea
dc.contributor.authorEfthimiou, Orestis
dc.date.accessioned2024-10-25T16:42:00Z
dc.date.available2024-10-25T16:42:00Z
dc.date.issued2023-06-14
dc.description.abstractOBJECTIVE When developing prediction models, researchers commonly employ a single model which uses all the available data (end-to-end approach). Alternatively, a similarity-based approach has been previously proposed, in which patients with similar clinical characteristics are first grouped into clusters, then prediction models are developed within each cluster. The potential advantage of the similarity-based approach is that it may better address heterogeneity in patient characteristics. However, it remains unclear whether it improves the overall predictive performance. We illustrate the similarity-based approach using data from people with depression and empirically compare its performance with the end-to-end approach. METHODS We used primary care data collected in general practices in the UK. Using 31 predefined baseline variables, we aimed to predict the severity of depressive symptoms, measured by Patient Health Questionnaire-9, 60 days after initiation of antidepressant treatment. Following the similarity-based approach, we used k-means to cluster patients based on their baseline characteristics. We derived the optimal number of clusters using the Silhouette coefficient. We used ridge regression to build prediction models in both approaches. To compare the models' performance, we calculated the mean absolute error (MAE) and the coefficient of determination (R2) using bootstrapping. RESULTS We analysed data from 16 384 patients. The end-to-end approach resulted in an MAE of 4.64 and R2 of 0.20. The best-performing similarity-based model was for four clusters, with MAE of 4.65 and R2 of 0.19. CONCLUSIONS The end-to-end and the similarity-based model yielded comparable performance. Due to its simplicity, the end-to-end approach can be favoured when using demographic and clinical data to build prediction models on pharmacological treatments for depression.
dc.description.numberOfPages6
dc.description.sponsorshipInstitut für Sozial- und Präventivmedizin (ISPM) - Evidence Synthesis Methods
dc.description.sponsorshipBerner Institut für Hausarztmedizin (BIHAM)
dc.identifier.doi10.48350/183431
dc.identifier.pmid37316257
dc.identifier.publisherDOI10.1136/bmjment-2023-300701
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/167855
dc.language.isoen
dc.publisherBMJ
dc.relation.ispartofBMJ mental health
dc.relation.issn2755-9734
dc.relation.organizationDCD5A442BDB9E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BECFE17DE0405C82790C4DE2
dc.subjectDepression & mood disorders
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc300 - Social sciences, sociology & anthropology::360 - Social problems & social services
dc.titlePredicting outcomes at the individual patient level: what is the best method?
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage6
oaire.citation.issue1
oaire.citation.startPage1
oaire.citation.volume26
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM) - Evidence Synthesis Methods
oairecerif.author.affiliationBerner Institut für Hausarztmedizin (BIHAM)
oairecerif.author.affiliation2Institut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliation2Institut für Sozial- und Präventivmedizin (ISPM) - Evidence Synthesis Methods
oairecerif.author.affiliation3Institut für Sozial- und Präventivmedizin (ISPM)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-06-15 07:55:18
unibe.description.ispublishedpub
unibe.eprints.legacyId183431
unibe.journal.abbrevTitleBMJ Ment Health
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
e300701.full.pdf
Size:
727.91 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections