• LOGIN
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publication
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements.
 

Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements.

Options
  • Details
BORIS DOI
10.7892/boris.122377
Date of Publication
December 4, 2018
Publication Type
Article
Division/Institute

Department for BioMed...

Universitätsklinik fü...

Author
Fabbiano, Salvatore
Suárez-Zamorano, Nicolas
Chevalier, Claire
Lazarević, Vladimir
Kieser, Silas
Rigo, Dorothée
Leo, Stefano
Veyrat-Durebex, Christelle
Gaïa, Nadia
Maresca, Marcello
Merkler, Doron
Gomez de Agüero Tamargo, Maria de la Mercedes
Department for BioMedical Research, Forschungsgruppe Gastroenterologie / Mukosale Immunologie
Universitätsklinik für Viszerale Chirurgie und Medizin, Gastroenterologie
Department for BioMedical Research (DBMR)
Macpherson, Andreworcid-logo
Universitätsklinik für Viszerale Chirurgie und Medizin, Gastroenterologie
Universitätsklinik für Viszerale Chirurgie und Medizin, Gastroenterologie
Department for BioMedical Research, Forschungsgruppe Gastroenterologie / Mukosale Immunologie
Schrenzel, Jacques
Trajkovski, Mirko
Subject(s)

600 - Technology::610...

Series
Cell metabolism
ISSN or ISBN (if monograph)
1550-4131
Publisher
Cell Press
Language
English
Publisher DOI
10.1016/j.cmet.2018.08.005
PubMed ID
30174308
Uncontrolled Keywords

TLR4 beige fat browni...

Description
Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4 bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4 or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/61433
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
1-s2.0-S1550413118305060-main.pdftextAdobe PDF7.67 MBAttribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0)publishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: d1c7f7 [27.06. 13:56]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo