Publication:
Leveraging machine learning to streamline the development of liposomal drug delivery systems.

cris.virtual.author-orcid0000-0003-2724-2942
cris.virtual.author-orcid0000-0001-9664-0149
cris.virtualsource.author-orcide65ca60a-6179-47ef-b5e2-30a76e29d283
cris.virtualsource.author-orcid9fcf4a75-0c19-4cbf-b727-bae3e5289a5f
cris.virtualsource.author-orcid6b97e2e3-6b2a-4f98-9733-96b11b561e6a
cris.virtualsource.author-orcid4ff10587-8f07-4b29-b9f6-f03e62223399
cris.virtualsource.author-orcidae7afe30-e0fc-44e9-bbbd-62a08cf770cb
cris.virtualsource.author-orcid41e57a5a-ddce-4265-b807-abe9cd37d3e4
cris.virtualsource.author-orcid625fe8f8-d8ad-4c11-b27d-1f36dd1c459d
datacite.rightsopen.access
dc.contributor.authorEugster, Remo
dc.contributor.authorOrsi, Markus
dc.contributor.authorButtitta, Giorgio
dc.contributor.authorSerafini, Nicola
dc.contributor.authorTiboni, Mattia
dc.contributor.authorCasettari, Luca
dc.contributor.authorReymond, Jean-Louis
dc.contributor.authorAleandri, Simone
dc.contributor.authorLuciani, Paola
dc.date.accessioned2024-11-25T06:27:08Z
dc.date.available2024-11-25T06:27:08Z
dc.date.issued2024-12
dc.description.abstractDrug delivery systems efficiently and safely administer therapeutic agents to specific body sites. Liposomes, spherical vesicles made of phospholipid bilayers, have become a powerful tool in this field, especially with the rise of microfluidic manufacturing during the COVID-19 pandemic. Despite its efficiency, microfluidic liposomal production poses challenges, often requiring laborious, optimization on a case-by-case basis. This is due to a lack of comprehensive understanding and robust methodologies, compounded by limited data on microfluidic production with varying lipids. Artificial intelligence offers promise in predicting lipid behaviour during microfluidic production, with the still unexploited potential of streamlining development. Herein we employ machine learning to predict critical quality attributes and process parameters for microfluidic-based liposome production. Validated models predict liposome formation, size, and production parameters, significantly advancing our understanding of lipid behaviour. Extensive model analysis enhanced interpretability and investigated underlying mechanisms, supporting the transition to microfluidic production. Unlocking the potential of machine learning in drug development can accelerate pharmaceutical innovation, making drug delivery systems more adaptable and accessible.
dc.description.numberOfPages14
dc.description.sponsorshipDepartment of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP)
dc.description.sponsorshipDCBP Gruppe Prof. Reymond
dc.description.sponsorshipDCBP Gruppe Prof. Luciani
dc.identifier.doi10.48620/76931
dc.identifier.pmid39489466
dc.identifier.publisherDOI10.1016/j.jconrel.2024.10.065
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/189724
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofJournal of Controlled Release
dc.relation.issn1873-4995
dc.relation.issn0168-3659
dc.subjectArtificial intelligence
dc.subjectDrug delivery & development
dc.subjectLiposomes
dc.subjectMachine learning
dc.subjectMicrofluidics
dc.titleLeveraging machine learning to streamline the development of liposomal drug delivery systems.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage1038
oaire.citation.startPage1025
oaire.citation.volume376
oairecerif.author.affiliationDepartment of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP)
oairecerif.author.affiliationDCBP Gruppe Prof. Reymond
oairecerif.author.affiliationDCBP Gruppe Prof. Reymond
oairecerif.author.affiliationDCBP Gruppe Prof. Luciani
oairecerif.author.affiliationDCBP Gruppe Prof. Luciani
oairecerif.author.affiliation2DCBP Gruppe Prof. Luciani
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.rolecorresponding author
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
1-s2.0-S0168365924007387-main.pdf
Size:
6.83 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0

Collections