Publication:
Predicting Social Anxiety Treatment Outcome based on Therapeutic Email Conversations

cris.virtual.author-orcid0000-0002-2432-7791
cris.virtualsource.author-orcid3e2dea22-8da4-4a83-b144-2af2c6f2bea3
cris.virtualsource.author-orcid166eedbc-2e64-4d52-96f4-653a50d0ad53
cris.virtualsource.author-orcid067642f4-8056-4ff1-8224-29d305cd8c38
datacite.rightsrestricted
dc.contributor.authorHoogendoorn, Mark
dc.contributor.authorBerger, Thomas
dc.contributor.authorSchulz, Ava
dc.contributor.authorStolz, Timo Johannes
dc.contributor.authorSzolovits, Peter
dc.date.accessioned2024-10-24T19:18:03Z
dc.date.available2024-10-24T19:18:03Z
dc.date.issued2017-05
dc.description.abstractPredicting therapeutic outcome in the mental health domain is of utmost importance to enable therapists to provide the most effective treatment to a patient. Using information from the writings of a patient can potentially be a valuable source of information, especially now that more and more treatments involve computer-based exercises or electronic conversations between patient and therapist. In this paper, we study predictive modeling using writings of patients under treatment for a social anxiety disorder. We extract a wealth of information from the text written by patients including their usage of words, the topics they talk about, the sentiment of the messages, and the style of writing. In addition, we study trends over time with respect to those measures. We then apply machine learning algorithms to generate the predictive models. Based on a dataset of 69 patients we are able to show that we can predict therapy outcome with an Area Under the Curve (AUC) of 0.83 halfway through the therapy and with a precision of 0.78 when using the full data (i.e., the entire treatment period). Due to the limited number of participants it is hard to generalize the results, but they do show great potential in this type of information.
dc.description.numberOfPages11
dc.description.sponsorshipInstitut für Psychologie, Klinische Psychologie und Psychotherapie
dc.identifier.doi10.7892/boris.94891
dc.identifier.pmid27542187
dc.identifier.publisherDOI10.1109/JBHI.2016.2601123
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/149441
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.ispartofIEEE journal of biomedical and health informatics
dc.relation.issn2168-2194
dc.relation.organizationDCD5A442BA84E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BD4DE17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc100 - Philosophy::150 - Psychology
dc.titlePredicting Social Anxiety Treatment Outcome based on Therapeutic Email Conversations
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage11
oaire.citation.issue99
oaire.citation.startPage1
oaire.citation.volumePP
oairecerif.author.affiliationInstitut für Psychologie, Klinische Psychologie und Psychotherapie
oairecerif.author.affiliationInstitut für Psychologie, Klinische Psychologie und Psychotherapie
oairecerif.author.affiliationInstitut für Psychologie, Klinische Psychologie und Psychotherapie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId94891
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
05_SEMANTIC_POSTPRINT.pdf
Size:
216.33 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections